Phân tích đa thức thành nhân tử: (x - 1)(x - 2)(x + 7)(x + 8) + 8
Câu hỏi:
Phân tích đa thức thành nhân tử: (x – 1)(x – 2)(x + 7)(x + 8) + 8.
Trả lời:
Ta có:
(x – 1)(x – 2)(x + 7)(x + 8) + 8
= (x – 1)(x + 7)(x – 2)(x + 8) + 8
= (x2 + 6x – 7)(x2 + 6x – 16) + 8
Đặt x2 + 6x – 7 = t, ta được
t(t – 9) + 8 = t2 – 9t + 8 = t2 – 8t – t + 8 = t(t – 8) – (t – 8) = (t – 8)(t – 1)
Thay t = x2 + 6x – 7 ta có
(x2 + 6x – 7 – 8)( x2 + 6x – 7 – 1) = (x2 + 6x – 15)( x2 + 6x – 8)
Vậy (x – 1)(x – 2)(x + 7)(x + 8) + 8 = (x2 + 6x – 15)( x2 + 6x – 8).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Xem lời giải »
Câu 2:
Tìm m để \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có cực trị và khoảng cách giữa 2 điểm cực trị bằng 10.
Xem lời giải »
Câu 3:
Phân tích đa thức thành nhân tử (x + y)3 – ( x – y)3.
Xem lời giải »
Câu 6:
Chứng minh với ab ≥ 1 thì \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\).
Xem lời giải »
Câu 7:
Cho a, b, c là 3 cạnh trong tam giác. Chứng minh rằng:
\(\frac{a}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\).
Xem lời giải »
Câu 8:
Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DE. Gọi I và J lần lượt là trung điểm của MP và NQ. Chứng minh IJ song song với AE và \[{\rm{IJ}} = \frac{1}{4}A{\rm{E}}\].
Xem lời giải »