X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Số học sinh khối 6 của một trường trong khoảng từ 200 đến 400, khi xếp hàng 12, hàng 15, hàng 18 đều thừa 5 học sinh. Tính số học sinh đó.


Câu hỏi:

Số học sinh khối 6 của một trường trong khoảng từ 200 đến 400, khi xếp hàng 12, hàng 15, hàng 18 đều thừa 5 học sinh. Tính số học sinh đó.

Trả lời:

Gọi m (m N và 200 ≤ m ≤ 400) là số học sinh khối 6 cần tìm.

Vì khi xếp hàng 12, hàng 15, hàng 18 đều dư 5 nên ta có:

m – 5 12; m – 5 15 và m – 5 18.

Suy ra: m – 5 là bội chung của 12, 15 và 18

 12 = 22.3

15 = 3. 5

18=2.32

BCNN (12; 15; 18) = 22.32.5=180

BC (12; 15; 18) = {0; 180; 360; 540; ...}

(m – 5) {0; 180; 360; 540; ...}

m  {5; 185; 365; 545; ...}

Vì 200 < m < 400 suy ra: m = 365

Vậy số học sinh khối 6 là 365 em.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Một ô tô trong khoảng 1,5 giờ đầu, mỗi giờ đi được 55 km và trong hai giờ sau, mỗi giờ đi được 49,5 km. Hỏi ô tô đi được quãng đường dài bao nhiêu ki–lô–mét?

Xem lời giải »


Câu 2:

Một điểm nằm trên đường thẳng y = 3x – 7 có hoành độ gấp đôi tung độ. Vậy hoành độ của điểm đó có giá trị là bao nhiêu?

Xem lời giải »


Câu 3:

Cho hàm số: y=25x2  có đồ thị là (P). Điểm trên (P) (khác gốc tọa độ O(0; 0)) có tung độ gấp ba lần hoành độ thì có hoành độ là bao nhiêu?

Xem lời giải »


Câu 4:

Phân số sẽ thay đổi như thế nào nếu mẫu số giảm đi 6 lần và tử số giữ nguyên.

Xem lời giải »


Câu 5:

Tìm số trung bình cộng của tất cả các số tự nhiên liên tiếp từ 1 đến 99.

Xem lời giải »


Câu 6:

Tìm các số tự nhiên a, b biết a + b = 135 và ƯCLN(a, b) = 27.

Xem lời giải »


Câu 7:

Tìm các số tự nhiên a, b biết a + b = 192 và ƯCLN(a, b) = 24.

Xem lời giải »


Câu 8:

Từ các số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3?

Xem lời giải »