Từ các số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3?
Câu hỏi:
Từ các số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3?
Trả lời:
Đặt y = 23, xét các số:
trong đó a; b; c; d; e đôi một khác nhau và thuộc tập {0; 1; y; 4; 5}.
Khi đó có 4 cách chọn a; 4 cách chọn b; 3 cách chọn c; 2 cách chọn d và 1 cách chọn e.
Theo quy tắc nhân có 4.4.3.2 = 96 số
Khi ta hoán vị trong y ta được hai số khác nhau
Nên có 96 . 2 = 192 số thỏa yêu cầu bài toán.