Tam giác ABC vuông tại A, có AB c, AC b. Gọi la là độ dài đoạn phân giác
Câu hỏi:
Tam giác ABC vuông tại A, có AB = c, AC = b. Gọi la là độ dài đoạn phân giác trong góc \[\widehat {BAC}\]. Tính la theo b và c.
Trả lời:
Ta có: \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{b^2} + {c^2}} \)
Do AD là phân giác trong của \[\widehat {BAC}\]
\( \Rightarrow BD = \frac{{AB}}{{AC}}\,.\,DC = \frac{c}{b}\,.\,DC = \frac{c}{{b + c}}\,.\,BC = \frac{{c\sqrt {{b^2} + {c^2}} }}{{b + c}}\)
Theo định lí hàm cosin, ta có:
\(B{D^2} = A{B^2} + A{D^2} - 2AB\,.\,AD\,.\,\cos \widehat {BAD}\)
\( \Leftrightarrow \frac{{{c^2}\left( {{b^2} + {c^2}} \right)}}{{{{\left( {b + c} \right)}^2}}} = {c^2} + A{D^2} - 2c\,.\,AD\,.\,\cos 45^\circ \)
\( \Rightarrow A{D^2} - c\sqrt 2 \,.\,AD + \left( {{c^2} - \frac{{{c^2}\left( {{b^2} + {c^2}} \right)}}{{{{\left( {b + c} \right)}^2}}}} \right) = 0\)
\( \Leftrightarrow A{D^2} - c\sqrt 2 \,.\,AD + \frac{{2b{c^3}}}{{{{\left( {b + c} \right)}^2}}} = 0\)
\( \Rightarrow AD = \frac{{\sqrt 2 bc}}{{b + c}}\) hay \({l_a} = \frac{{\sqrt 2 bc}}{{b + c}}\).