Tìm giá trị lớn nhất M của hàm số y = x^4 - 2x^2 + 3 trên đoạn [0; căn bậc hai 3]
Câu hỏi:
Tìm giá trị lớn nhất M của hàm số y = x4 − 2x2 + 3 trên đoạn \(\left[ {0;\;\sqrt 3 } \right]\).
Trả lời:
TXĐ: \(D = \left[ {0;\;\sqrt 3 } \right]\)
y = x4 − 2x2 + 3 Þ y¢ = 4x3 − 4x = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\;\;\;\left( {tm} \right)\\x = 1\;\;\;\left( {tm} \right)\\x = - 1\;\left( l \right)\end{array} \right.\)
Ta tính được \(f\left( 0 \right) = 3;\;f\left( 1 \right) = 2;\;f\left( {\sqrt 3 } \right) = 6\)
Vậy giá trị lớn nhất của hàm số là M = 6.