X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm giá trị nhỏ nhất của hàm số trên đoạn [1/e; e]


Câu hỏi:

Tìm giá trị nhỏ nhất của hàm số trên đoạn \[\left[ {\frac{1}{e};\,\,e} \right]\].

Trả lời:

Ta có y’ = 2xlnx + x = x(2lnx + 1)

\[y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = {e^{ - \,\frac{1}{2}}}\end{array} \right.\]

\[y\left( {\frac{1}{e}} \right) = - \frac{1}{{{e^2}}} & ;\,\,y\left( {{e^{ - \,\frac{1}{2}}}} \right);\,\,y(e) = {e^2}\].

Vậy \[\mathop {\min }\limits_{\left[ {\frac{1}{e};\,\,e} \right]} y = - \frac{1}{{2e}}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm giá trị lớn nhất của hàm số y = x(2 − lnx) trên đoạn [2; 3] .

Xem lời giải »


Câu 2:

Tìm số giao điểm của đồ thị hàm số y = x4 − 3x2 − 5 và trục hoành.

Xem lời giải »


Câu 3:

Tìm giao điểm của đồ thị hàm số y = 2x + 1 (d) và trục hoành.

Xem lời giải »


Câu 4:

Cho hàm số y = log2 x. Khẳng định nào sau đây sai?

Xem lời giải »


Câu 5:

Một trong các bạn A, B, C và D làm vỡ kính cửa sổ.  Khi được hỏi, họ trả lời như sau:

     A: “C làm vỡ”.

     B: “Không phải tôi”.

     C: “D làm vỡ”.

     D: “C đã nói dối”.

Nếu có đúng một người nói thật thì ai đã làm vỡ cửa số.

Xem lời giải »