X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm giá trị nhỏ nhất của hàm số y = 3x + 4/x^2 trên khoảng (0; + vô cùng)


Câu hỏi:

Tìm giá trị nhỏ nhất của hàm số \(y = 3{\rm{x}} + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).

Trả lời:

Ta có :

\(y' = 3 - \frac{8}{{{x^3}}}\)

\(\begin{array}{l}y' = 0 \Leftrightarrow 3 - \frac{8}{{{x^3}}} = 0\\ \Leftrightarrow x = \frac{2}{{\sqrt[3]{3}}} \Rightarrow y = \frac{9}{{\sqrt[3]{3}}} = 3\sqrt[3]{9}.\end{array}\)

Vậy giá trị nhot nhất của \(y = 3{\rm{x}} + \frac{4}{{{x^2}}}\)\(3\sqrt[3]{9}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Xem lời giải »


Câu 2:

Tìm m để \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có cực trị và khoảng cách giữa 2 điểm cực trị bằng 10.

Xem lời giải »


Câu 3:

Phân tích đa thức thành nhân tử (x + y)3 – ( x – y)3.

Xem lời giải »


Câu 4:

Phân tích đa thức sau thành nhân tử: x2 + 6x + 9.

Xem lời giải »


Câu 5:

Cho hàm số \((C):y = \frac{{x + 2}}{{x - 1}}\)

Cho điểm M(0; m). Xác định m để từ A kẻ được 2 tiếp tuyến đến (C) sao cho 2 tiếp tuyến tương ứng nằm về hai phía đối với trục Ox.

Xem lời giải »


Câu 6:

Tìm các số nguyên x, y thỏa mãn x3 + 2x2 + 3x + 2 = y3.

Xem lời giải »


Câu 7:

Tập xác định của hàm số y = logx là:

Xem lời giải »


Câu 8:

Cho các số dương x, y, z thỏa mãn điều kiện xy + yz + zx = xyz. Chứng minh rằng:

\(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \).

Xem lời giải »