X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm hệ số của x^15 trong khai triển (x^2 + 8)^12.


Câu hỏi:

Tìm hệ số của x15 trong khai triển (x2 + 8)12.

Trả lời:

(x2 + 8)12 = k=012C12k.x2k.812k

Ta thấy (x2)k luôn có số mũ chẵn do đó không xuất hiện x15 trong khai triển này.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Xem lời giải »


Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 3:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 4:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 5:

Hai người đi xe từ A đến C. Người thứ nhất đi theo đường từ A đến B rồi từ B đến C. Người thứ hai đi thẳng từ A đến C. Cả hai đều về đích cùng lúc. Tính quãng đường và độ dịch chuyển của người thứ nhất và người thứ hai, so sánh và nhận xét kết quả.

Xem lời giải »


Câu 6:

Tam giác ABC có AC = 4,  ACB^ = 60°. Tính độ dài đường cao h xuất phát từ đỉnh A của tam giác.

Xem lời giải »


Câu 7:

Hình bình hành có trục đối xứng không?

Xem lời giải »


Câu 8:

Cho tam giác ABC và điểm D bất kỳ. Chứng minh:

DA.BC+DB.CA+DC.AB=0

Xem lời giải »