X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm nguyên hàm F (x) của hàm số f (x)  6x + sin 3x, biết F(0) = 2/3


Câu hỏi:

Tìm nguyên hàm F (x) của hàm số f (x) = 6x + sin 3x, biết F(0)=23.

Trả lời:

Do f (x) = 6x + sin 3x nên nguyên hàm F (x) của hàm số f (x) là:

F(x)=f(x)dx=(6x+sin3x)dx=3x2cos3x3+C

F(0)=2313+C=23C=1.

Vậy nguyên hàm F (x) của hàm số f (x) = 6x + sin 3x là F(x)=3x2cos3x3+1.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức P=1a+2b+3+1b+2c+3+1c+2a+3.

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: P=aa+bc+bb+ca+cc+ab.

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y (−1).

Xem lời giải »


Câu 6:

Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d Î ℝ) có đồ thị như hình vẽ bên. Tìm số điểm cực trị của hàm số đã cho.

Cho hàm số y = ax^3 + bx^2 + cx + d (a, b, c, d thuộc R) có đồ thị như hình vẽ bên. Tìm số  (ảnh 1)

Xem lời giải »


Câu 7:

Cho hàm số f (x) = ax4 + bx2 + c (a, b, c Î ℝ). Đồ thị của hàm số y = f (x) như hình vẽ bên. Số nghiệm thực của phương trình 4f (x) − 3 = 0 là:

Cho hàm số f (x) = ax^4 + bx^2 + c (a, b, c thuộc R). Đồ thị của hàm số y = f (x) như hình  (ảnh 1)

Xem lời giải »


Câu 8:

Cho hàm số f (x) = ax4 + bx2 + c có đồ thị như hình vẽ dưới đây. Hỏi phương trình 2f (x) = −1 có bao nhiêu nghiệm?

Cho hàm số f (x) =ax64 + bx^2 + c có đồ thị như hình vẽ dưới đây. Hỏi phương trình (ảnh 1)

Xem lời giải »