X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm nguyên hàm F (x) của hàm số f (x)  6x + sin 3x, biết F(0) = 2/3


Câu hỏi:

Tìm nguyên hàm F (x) của hàm số f (x) = 6x + sin 3x, biết \(F\left( 0 \right) = \frac{2}{3}\).

Trả lời:

Do f (x) = 6x + sin 3x nên nguyên hàm F (x) của hàm số f (x) là:

\(F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {6x + \sin 3x} \right)dx} = 3{x^2} - \frac{{\cos 3x}}{3} + C\)

\(F\left( 0 \right) = \frac{2}{3} \Rightarrow - \frac{1}{3} + C = \frac{2}{3} \Leftrightarrow C = 1\).

Vậy nguyên hàm F (x) của hàm số f (x) = 6x + sin 3x là \(F\left( x \right) = 3{x^2} - \frac{{\cos 3x}}{3} + 1\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y (−1).

Xem lời giải »


Câu 6:

Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d Î ℝ) có đồ thị như hình vẽ bên. Tìm số điểm cực trị của hàm số đã cho.

Cho hàm số y = ax^3 + bx^2 + cx + d (a, b, c, d thuộc R) có đồ thị như hình vẽ bên. Tìm số  (ảnh 1)

Xem lời giải »


Câu 7:

Cho hàm số f (x) = ax4 + bx2 + c (a, b, c Î ℝ). Đồ thị của hàm số y = f (x) như hình vẽ bên. Số nghiệm thực của phương trình 4f (x) − 3 = 0 là:

Cho hàm số f (x) = ax^4 + bx^2 + c (a, b, c thuộc R). Đồ thị của hàm số y = f (x) như hình  (ảnh 1)

Xem lời giải »


Câu 8:

Cho hàm số f (x) = ax4 + bx2 + c có đồ thị như hình vẽ dưới đây. Hỏi phương trình 2f (x) = −1 có bao nhiêu nghiệm?

Cho hàm số f (x) =ax64 + bx^2 + c có đồ thị như hình vẽ dưới đây. Hỏi phương trình (ảnh 1)

Xem lời giải »