Cho hàm số f (x) = ax^4 + bx^2 + c (a, b, c thuộc R). Đồ thị của hàm số y = f (x) như hình
Câu hỏi:
Cho hàm số f (x) = ax4 + bx2 + c (a, b, c Î ℝ). Đồ thị của hàm số y = f (x) như hình vẽ bên. Số nghiệm thực của phương trình 4f (x) − 3 = 0 là:

Trả lời:

Ta có: 4f(x)−3=0⇔f(x)=34.
Ta nhận thấy: 0<34<1.
Khi đó số nghiệm thực của phương trình 4f (x) − 3 = 0 chính là số giao điểm của 2 đồ thị y = f (x) và y=34.
Nhìn vào đồ thị hàm số ta có 2 đồ thị giao nhau tại 4 điểm phân biệt, nên phương trình đã cho có 4 nghiệm thực.