Tìm tất cả các giá trị của m để phương trình: x^4 - 2(m - 1)x^2 + 4m - 8 = 0 có 4 nghiệm
Câu hỏi:
Tìm tất cả các giá trị của m để phương trình: x4 – 2(m – 1)x2 + 4m – 8 = 0 có 4 nghiệm phân biệt.
A. m > 2 và m ≠ 3;
B. m > 2;
C. m > 1 và m ≠ 3.
D. m > 3.
Trả lời:
Đáp án đúng là: A
Đặt t = x2 (t ≥ 0)
Ta có phương trình đã cho trở thành t2 – 2(m – 1)t + 4m – 8 = 0
Phương trình có 4 nghiệm phân biệt khi phương trình có hai nghiệm phân biệt dương
Khi đó ta có:
\(\left\{ \begin{array}{l}\Delta ' > 0\\{t_1} + {t_2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{(m - 1)^2} - (4m - 8) > 0\\4m - 8 > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m + 1 - 4m + 8 > 0\\m > 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 6m + 9 > 0\\m > 2\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{(m - 3)^2} > 0\\m > 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 3\\m > 2\end{array} \right.\)
Vậy với m > 2 và m ≠ 3 thì thỏa mãn yêu cầu bài toán.