X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm m để phương trình 2sin^2x - (2m + 1)sinx + 2m - 1 = 0 có nghiệm thuộc khoảng t


Câu hỏi:

Tìm m để phương trình 2sin2x – (2m + 1)sinx + 2m – 1 = 0 có nghiệm thuộc khoảng t (−1; 0).

Trả lời:

Đặt t = sinx, t (−1; 0) phương trình trở thành:

2t2 – (2m + 1)t + 2m – 1 = 0 (*)

Theo yêu cầu bài toán ta tìm m để phương trình (*) có nghiệm t (−1; 0)

Ta có A + b + c = 2 – (2m + 1) + 2m – 1 = 0

Nên (*) luôn có 2 nghiệm \({t_1} = \frac{{2m - 1}}{2}\); t2 = 1

Loại nghiệm t = 1.

Do đó, bài toán thỏa mãn \( - 1 < \frac{{2m - 1}}{2} < 0 \Leftrightarrow \frac{{ - 1}}{2} < m < \frac{1}{2}\).

Vậy với \(\frac{{ - 1}}{2} < m < \frac{1}{2}\) thỏa mãn yêu cầu bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tập xác định D của hàm số y = ln(x – 1).

Xem lời giải »


Câu 2:

Tìm tập xác định D của hàm số y = ln(x – 3).

Xem lời giải »


Câu 3:

Tìm m để phương trình cos2x + 2(m + 1)sinx − 2m – 1 = 0 có đúng 3 nghiệm x (0; π).

Xem lời giải »


Câu 4:

Cho phương trình (m2 + 2)cos2x – 2msin2x + 1 = 0. Để phương trình có nghiệm thì giá trị thích hợp của tham số m là

Xem lời giải »


Câu 5:

Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.

Cho hàm số f(x) = ax^4 + bx^3 + cx^2 (a, b, c thuộc R). Hàm số y = f '(x) có đồ thị như  (ảnh 1)

Xem lời giải »


Câu 6:

Cho tứ giác ABCD như hình dưới đây: Điểm E là trung điểm của đoạn thẳng AB. Điểm F là trung điểm của đoạn thẳng BC. Điểm G là trung điểm của đoạn thẳng DC. Điểm H là trung điểm của đoạn thẳng AD. Hỏi tứ giác EFGH là hình gì? Chứng minh điều đó.

Cho tứ giác ABCD như hình dưới đây: Điểm E là trung điểm của đoạn thẳng  (ảnh 1)

Xem lời giải »


Câu 7:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 – 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1)?

Xem lời giải »