X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=2/3x^3-mx^2-2(3m^2-1)x+2/3


Câu hỏi:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=23x3-mx2-2(3m2-1)x+23 có hai điểm cực trị có hoành độ x1,x2 sao cho x1x2+2(x1+x2)=1

A. m=0

B. m=-23

C. m=23

D. m=-12

Trả lời:

Chọn C

Ta có:y'=2x2-2mx-2(3m2-1)

g(x)=x2-mx-3m2+1 là tam thức bậc hai có =13m2-4

Do đó hàm số có hai điểm cực trị khi và chỉ khi y' có hai nghiệm phân biệt

g(x) có hai nghiệm phân biệt

x1;x2 là các nghiệm của g(x) nên theo định lý Vi-ét, ta có

Đối chiếu với điều kiện (1), ta thấy chỉ m=23 thỏa mãn yêu cầu bài toán

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Hàm số y=x3-3x+1 đạt cực đại tại x bằng

Xem lời giải »


Câu 2:

Tìm giá trị cực đại yCĐ của hàm số y=-x4+2x2-5

Xem lời giải »


Câu 3:

Hàm số y=13x3-2x2+4x-1 có bao nhiêu điểm cực trị? 

Xem lời giải »


Câu 4:

Cho hàm số y=x3-3x2+2. Khẳng định nào sau đây đúng

Xem lời giải »


Câu 5:

Gọi x1,x2 là hai điểm cực trị của hàm số y=x3-3mx2+3(m2-1)x-m3+m . Tìm tất cả các giá trị của tham số thực m để : x12+x22-x1x2=7

Xem lời giải »