X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm tất cả giá trị thực của tham số m để phương trình cos 2x - (2m + 1)cos x + m


Câu hỏi:

Tìm tất cả giá trị thực của tham số m để phương trình cos 2x − (2m + 1)cos x + m + 1 = 0 có nghiệm trên khoảng \(\left( {\frac{\pi }{2};\;\frac{{3\pi }}{2}} \right)\).

Trả lời:

cos 2x − (2m + 1)cos x + m + 1 = 0

Û 2cos2 x − 1 − (2m + 1)cos x + m + 1 = 0

Û 2cos2 x − (2m + 1)cos x + m = 0

Û 2cos2 x − cos x − 2mcos x + m = 0

Û cos x(2cos x − 1) − m(2cos x − 1) = 0

Û (2cos x − 1)(cos x − m) = 0

\( \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\\cos x = m\end{array} \right.\)

Để phương trình có nghiệm \(x \in \left( {\frac{\pi }{2};\;\frac{{3\pi }}{2}} \right)\) thì −1 ≤ cos x < 0.

Hay −1 ≤ m < 0.

Vậy −1 ≤ m < 0 là các giá trị của m thỏa mãn. 

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Có bao nhiêu số tự nhiên có 9 chữ số đôi một khác nhau sao cho có mặt đồng thời bốn chữ số 4; 5; 6; 7 và bốn chữ số đó đôi một không kề nhau?

Xem lời giải »


Câu 6:

Có bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau?

Xem lời giải »


Câu 7:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 8:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »