Tìm x biết (8x - 7)(8x - 5)(2x - 1)(4x - 1) = 9
Câu hỏi:
Tìm x biết (8x – 7)(8x – 5)(2x – 1)(4x – 1) = 9.
Trả lời:
Ta có:
(8x – 7)(8x – 5)(2x – 1)(4x – 1) = 9
⇔ (8x – 7)(8x – 5)(8x – 4)(8x – 2) = 72
Đặt 8x – 5 = a
Khi đó ta có:
(a – 2)a(a + 1)(a + 3) = 72
⇔ (a2 – 2a)(a2 + 4a + 3) – 72 = 0
⇔ a4 – 4a3 + 3a2 – 2a3 – 8a2 – 6a – 72 = 0
⇔ a4 + 4a3 – 2a3 – 8a2 + 3a2 + 12a – 18a – 72 = 0
⇔ a3(a + 4) – 2a2(a + 4) + 3a(a + 4) – 18(a + 4) = 0
⇔ (a + 4)(a3 – 2a2 + 3a – 18) = 0
⇔ (a + 4)(a3 – 3a2 + a2 – 3a + 6a – 18) = 0
⇔ (a + 4)[a2(a – 3) + a(a – 3) + 6(a – 3)] = 0
⇔ (a + 4)(a – 3)(a2 + a + 6) = 0 (*)
Vì a2+a+6=a2+2.a.12+14+234=(a+12)2+234>0
Nên (∗)⇔[a+4=0a−3=0⇔[a=−4a=3
Suy ra [8x−5=−48x−5=3
\( \Leftrightarrow \left[ 8x=18x=8 \right. \Leftrightarrow \left[ x=18x=1 \right.\)
Vậy x = 1 hoặc x=18.