Với các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần. A. 35 280 số. B. 40 320 số. C. 5 880 số. D. 840 s
Câu hỏi:
Với các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần.
Trả lời:
Đáp án đúng là: C
Do chữ số 1 có mặt 3 lần nên ta coi như tìm các số thỏa mãn đề bài được tạo nên từ 8 số 0; 1; 1; 1; 2; 3; 4; 5.
Chọn số cho ô đầu tiên có 7 cách.
Chọn số cho ô thứ hai có 7 cách.
…
Chọn số cho ô thứ 8 có 1 cách.
Suy ra có 7.7.6.5.4.3.2.1 = 7.7! cách xếp 8 chữ số 0; 1; 1; 1; 2; 3; 4; 5 vào 8 ô.
Mặt khác chữ số 1 lặp lại 3 lần nên số cách xếp là số.