Với các số thực dương a, b, c chứng minh rằng: a^3 + b^3 + c^3 > = ab^2 + bc^2 + ca^2
Câu hỏi:
Với các số thực dương a, b, c chứng minh rằng: a3 + b3 + c3 ≥ ab2 + bc2 + ca2.
Trả lời:
Áp dụng bất đẳng thức Cô – si ta có:
a3 + b3 + b3 ≥ 3ab2
b3 + c3 + c3 ≥ 3bc2
a3 + a3 + c3 ≥ 3ca2
Cộng vế với vế của các bất đẳng thức trên ta được
3(a3 + b3 + c3) ≥ 3(ab2 + bc2 + ca2)
⇔ a3 + b3 + c3 ≥ ab2 + bc2 + ca2
Dấu “=” xảy ra khi a = b = c
Vậy a3 + b3 + c3 ≥ ab2 + bc2 + ca2.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.
Xem lời giải »
Câu 2:
Phân tích đa thức thành nhân tử: x2 + 2y2 – 3xy + x – 2y.
Xem lời giải »
Câu 3:
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Xem lời giải »
Câu 5:
Phân tích đa thức sau thành nhân tử: 2ab2 – a2b – b3.
Xem lời giải »
Câu 7:
Chọn đáp án đúng. Căn bậc hai số học của số a không âm là:
Xem lời giải »
Câu 8:
Tam giác ABC có BC = a và CA = b. Tam giác ABC có diện tích lớn nhất khi góc C bằng:
Xem lời giải »