X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

b) Chứng minh rằng HA . HD = HB . HC;


Câu hỏi:

b) Chứng minh rằng HA . HD = HB . HC;

Trả lời:

b) Xét (O) có BC là đường kính, AD là dây cung suy ra OC AD tại H

Do đó H là trung điểm của AD (định lý đường kính vuông góc với dây)

Hay AH = HD

Suy ra AH . HD = AH2

Xét tam giác ABC vuông tại A có AH BC

Suy ra HB . HC = AH2 (hệ thức lượng trong tam giác vuông)

Do đó HA . HD = HB . HC.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính nhanh: (–25) . (75 – 45) – 75 . (45 – 25).

Xem lời giải »


Câu 2:

Chứng tỏ: ab¯.101=abab¯

Xem lời giải »


Câu 3:

Với mỗi số nguyên dương n, kí hiệu Slà tổng của n số nguyên tố đầu tiên (S1 = 2; S2 = 2 + 3 = 5; S3 = 2 + 3 + 5 = 10; ...).

Chứng minh rằng trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.

Xem lời giải »


Câu 4:

Thắng có 25 viên bi xanh và 15 viên bi đỏ. Hỏi tỉ số phần trăm của số bi đỏ và số bi xanh.

Xem lời giải »


Câu 5:

c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;

Xem lời giải »


Câu 6:

d) Chứng minh AI là tiếp tuyến của đường tròn (O; R).

Xem lời giải »


Câu 7:

Điền số thích hợp vào chỗ trống theo quy luật 24, 48, 80, 120, ...

Xem lời giải »


Câu 8:

Cho hàm số y = f(x) = 4x2 – 4mx + m2 – 2m. Tìm tất cả các giá trị của tham số m sao cho min(x) = 3 trên [–2; 0].

Xem lời giải »