X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

b) Trên cạnh AC lấy điểm K (K ≠ A, K ≠ C), gọi D là hình chiếu của A trên BK. Chứng minh rằng: BD.BK = BH.BC.


Câu hỏi:

b) Trên cạnh AC lấy điểm K (K ≠ A, K ≠ C), gọi D là hình chiếu của A trên BK. Chứng minh rằng: BD.BK = BH.BC.

Trả lời:

b,  ADB^=AHB^(=90°) ADHB nội tiếp

DHA^=DBA^ (cùng chắn AD)    (1)

CKB^=KAB^+ABD^=90°+ABD^DHB^=DHA^+AHB^=DHA^+90°ABD^=DHA^(cmt)

CKB^=DHB^

Có: CKB^=DHB^

 CKB^ chung

Suy ra ΔDHBΔCKBg.g

BDBC=BHBKBD.BK=BH.BC

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Một ô tô trong khoảng 1,5 giờ đầu, mỗi giờ đi được 55 km và trong hai giờ sau, mỗi giờ đi được 49,5 km. Hỏi ô tô đi được quãng đường dài bao nhiêu ki–lô–mét?

Xem lời giải »


Câu 2:

Một điểm nằm trên đường thẳng y = 3x – 7 có hoành độ gấp đôi tung độ. Vậy hoành độ của điểm đó có giá trị là bao nhiêu?

Xem lời giải »


Câu 3:

Cho hàm số: y=25x2  có đồ thị là (P). Điểm trên (P) (khác gốc tọa độ O(0; 0)) có tung độ gấp ba lần hoành độ thì có hoành độ là bao nhiêu?

Xem lời giải »


Câu 4:

Phân số sẽ thay đổi như thế nào nếu mẫu số giảm đi 6 lần và tử số giữ nguyên.

Xem lời giải »


Câu 5:

Cho đoạn thẳng AB, O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ax, By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By tại D. Chứng minh CD = AC + BD.

Xem lời giải »


Câu 6:

Cho đoạn thẳng AB có độ dài 2a .Vẽ về một phía của AB các tia Ax và By vuông góc với AB. Qua trung điểm của M của AB có hai đường thẳng thay đổi luôn vuông góc với nhau và cắt Ax, By theo thứ tự tại C và D. Xác định vị trí của các điểm C, D sao cho tam giác MCD có diện tích nhỏ nhất . Tính diện tích tam giác đó.

Xem lời giải »


Câu 7:

Có bao nhiêu số có ba chữ số chia hết cho 3?

Xem lời giải »


Câu 8:

cho tam giác vuông, biết độ dài một cạch góc vuông là 5 cm, độ dài cạnh góc vuông còn lại nhỏ hơn cạnh huyền 3cm. tính diện tích tam giác vuông đó.

Xem lời giải »