X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Ba công nhân có năng suất lao động tương ứng tỉ lệ với 3, 5, 7. Tính tổng số tiền ba người được thưởng nếu biết tổng số tiền thưởng của người thứ nhất và thứ hai là 5,6 triệu. A. 11 triệu; B.


Câu hỏi:

Ba công nhân có năng suất lao động tương ứng tỉ lệ với 3, 5, 7. Tính tổng số tiền ba người được thưởng nếu biết tổng số tiền thưởng của người thứ nhất và thứ hai là 5,6 triệu.

A. 11 triệu;
B. 15 triệu;
C. 10,5 triệu;
D. 10 triệu.

Trả lời:

Đáp án đúng là: C

Gọi x, y, z lần lượt là số tiền thưởng của ba công nhân (x, y, z > 0) (triệu đồng)

Giả sử x, y, z tỉ lệ thuận với 3; 5; 7 

Ta có x3=y5=z7  và x + y = 5,6

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Ba công nhân có năng suất lao động tương ứng tỉ lệ với 3, 5, 7. Tính tổng số tiền ba người được thưởng nếu biết tổng số tiền thưởng của người thứ nhất và thứ hai là 5,6 triệu. A. 11 triệu; B. 15 triệu; C. 10,5 triệu; D. 10 triệu. (ảnh 1)

Do đó tổng số tiền thưởng của ba người là 10,5 triệu

Vậy ta chọn đáp án C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính nhanh: (–25) . (75 – 45) – 75 . (45 – 25).

Xem lời giải »


Câu 2:

Chứng tỏ: ab¯.101=abab¯

Xem lời giải »


Câu 3:

Với mỗi số nguyên dương n, kí hiệu Slà tổng của n số nguyên tố đầu tiên (S1 = 2; S2 = 2 + 3 = 5; S3 = 2 + 3 + 5 = 10; ...).

Chứng minh rằng trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.

Xem lời giải »


Câu 4:

Thắng có 25 viên bi xanh và 15 viên bi đỏ. Hỏi tỉ số phần trăm của số bi đỏ và số bi xanh.

Xem lời giải »


Câu 5:

Một người đi ô tô trong 2 giờ đầu, mỗi giờ đi được 42,5 km; trong 4 giờ sau, mỗi giờ đi được 46,25 km. Hỏi trên cả quãng đường, trung bình mỗi giờ người đó đi được bao nhiêu ki – lô – mét?

Xem lời giải »


Câu 6:

Trong một tháng có hai ngày đầu tháng và cuối tháng đều là chủ nhật. Hỏi đó là tháng mấy?

Xem lời giải »


Câu 7:

Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S.

a) Chứng minh rằng tam giác AQR và tam giác APS là tam giác cân.

Xem lời giải »


Câu 8:

b) QR cắt PS tại H; M, N là trung điểm của QR và PS. Chứng minh rằng tứ giác AMHN là hình chữ nhật.

Xem lời giải »