Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S. a) Chứng minh rằng tam giác AQR và tam giác APS là tam giác cân.
Câu hỏi:
Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S.
a) Chứng minh rằng tam giác AQR và tam giác APS là tam giác cân.
Trả lời:
a)
Vì ABCD là hình vuông (giả thiết)
Nên AB = BC = CD = DA,
Ta có
Suy ra
Xét DABR và DADQ có:
;
AB = AD (chứng minh trên);
(chứng minh trên)
Do đó DABR = DADQ (g.c.g)
Suy ra AR = AQ (2 cạnh tương ứng)
Do đó DAQR cân tại A
Chứng minh tương tự ta có DADS = DABP (g.c.g)
Suy ra AS = AP (2 cạnh tương ứng)
Do đó tam giác APS cân tại A.