c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi điểm C di chuyển trên Ax.
Câu hỏi:
c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi điểm C di chuyển trên Ax.
Trả lời:
c) Ta có AH ⊥ CD, OD ⊥ CD
Suy ra AH // OD (quan hệ từ vuông góc đến song song)
Ta có DH ⊥ CA, AO ⊥ CA
Suy ra DH // OA (quan hệ từ vuông góc đến song song)
Xét tứ giác AHDO có
AH // OD, DH // OA (chứng minh trên)
Suy ra tứ giác AHDO là hình bình hành
Mà I là giao điểm của AD và HO
Do đó I là trung điểm của HO
Trên tia đối của tia AO, lấy điểm G sao cho A là trung điểm của GO
Khi đó AI là đường trung bình của tam giác GHO
Suy ra AI // GH
Mà AI ⊥ HO (chứng minh trên)
Do đó GH ⊥ HO
Hay
Vậy khi C di chuyển trên Ax thì trực tâm H của tam giác ACD di động trên đường tròn tâm A, bán kính AO cố định.