Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O).
Câu hỏi:
Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng một nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm).
1) Chứng minh OC ⊥ BD.
2) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn.
3) Chứng minh .
4) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.
Trả lời:
1) CB, CD là hai tiếp tuyến của (O)
Suy ra: CB = CD (tính chất hai tiếp tuyến cắt nhau)
Mà OB = OD = R
⇒ OC là trung trực của BD ⇒ OC ⊥ BD
2) Ta có: OB ⊥ BC (BC là tiếp tuyến của (O))
⇒ ∆OBC vuông tại B
⇒ ∆OBC nội tiếp đường tròn đường kính OC
⇒ O, B, C cùng thuộc đường tròn đường kính OC
∆ODC vuông tại D nên ∆ODC nội tiếp đường tròn đường kính OC
⇒ O, D, C cùng thuộc đường tròn đường kính OC
Vậy O, B, C, D cùng thuộc đường tròn đường kính OC.
3) Áp dụng hệ thức lượng trong tam giác vuông BAC vuông tại B ta có:
CM.CA = CB2
Vì CB = CD nên CM.CA=CD2
Xét ∆CMD và ∆CDA có:
Chung
⇒ ∆CMD ~ ∆CDA (c.g.c)
⇒
4) Chu vi ∆OMH = R + OH + MH
(OH + MH)2 = OH2 + MH2 + 2.OH.MH = OM2 + 2 .OH.MH
= R2 + 2 .OH.MH ≤ 2R2
⇒ OH + MH ≤ R
⇒ Chu vi ∆OMH = R + OH + MH ≤ R + R =
Vậy chu vi ∆OMH lớn nhất bằng khi điểm M thuộc (O) thỏa mãn .
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.
Xem lời giải »
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: .
Xem lời giải »
Câu 3:
Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.
a) Chứng minh tứ giác BFCE là hình bình hành.
b) Chứng minh tứ giác BFEA là hình chữ nhật.
c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.
d) Vẽ AH ⊥ BC tại H. Gọi M là trung điểm của HC. Chứng minh FM ⊥ AM.
Xem lời giải »
Câu 4:
Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó
Xem lời giải »
Câu 5:
Chứng minh rằng A > 2016 biết A = .
Xem lời giải »
Câu 6:
Tại cửa hàng giá niêm yết một cái áo là 300000 đồng. Nếu bán với giá bằng ba phần tư giá niêm yết thì được lãi 20%. Hỏi để lãi 40% thì cửa hàng bán giấ niêm yết là bao nhiêu?
Xem lời giải »
Câu 7:
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H.
a) Chứng minh: Tam giác ABE và tam giác AFC đồng dạng, AF. AB = AE . AC.
b) Chứng minh = .
c) Cho AE = 3cm, AB = 6cm. Chứng minh: SABC = 4SAEF.
Xem lời giải »
Câu 8:
Cho tam giác ABC vuông tại A (AB<AC). Gọi D, E lần lượt là trung điểm của BC, AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của EF. Vẽ AH vuông góc với BC (H thuộc BC). trên đoạn thẳng HC lấy điểm M sao cho HM = MC. Chứng minh AM vuông góc với FM.
Xem lời giải »