X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số bậc hai y = f(x) có đồ thị như hình vẽ bên, một hàm số g (x


Câu hỏi:

Cho hàm số bậc hai y = f(x) có đồ thị như hình vẽ bên, một hàm số g (x) xác định theo f (x) có đạo hàm g'x=fx+m. Tìm tất cả các giá trị thực của tham số m để hàm số g (x) không có cực trị.

A. m1

B. m1

C. m > 1 hoặc m < 0D

D. m > 1

Trả lời:

Đáp án B

Gọi hàm số y=fx=ax2+bx+ca0

Đồ thị hàm số y=ax2+bx+c nhận điểm (0; - 1) làm đỉnh và đi qua điểm (1; 1) nên a=2,b=0,c=1 hay fx=2x21

Do đó g'x=2x2+m1

Hàm số y=g(x) không có cực trị g'x=0 vô nghiệm hoặc có nghiệm kép.

m10m1

Vậy m1

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số y=x2ax+bx1. Đặt A=ab,B=a+2b. Để đồ thị hàm số có điểm cực đại C0;1 thì tổng giá trị của A + 2B là:

Xem lời giải »


Câu 2:

Cho hàm bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Số điểm cực đại của hàm số fx2+2x+2 là:

Xem lời giải »


Câu 3:

Điểm thuộc đường thẳng d:xy1=0 cách đều hai điểm cực trị của đồ thị hàm số y=x33x2+2 là:

Xem lời giải »


Câu 4:

Khoảng cách từ điểm cực tiểu của đồ thị hàm số y=x33x2+2 đến trục tung bằng:

Xem lời giải »


Câu 5:

Cho hàm số y = f(x) có đồ thị như hình vẽ bên:

Trên đoạn 3;3, hàm số đã cho có mấy điểm cực trị?

Xem lời giải »