X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số (P): y = x^2 – 3x + 2 và (d): y = x + m. Tìm M để (d) và (P) cắt nhau tại hai điểm phân biệt.


Câu hỏi:

Cho hàm số (P): y = x2 – 3x + 2 và (d): y = x + m. Tìm M để (d) và (P) cắt nhau tại hai điểm phân biệt.

Trả lời:

Lời giải

Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình:

x2 – 3x + 2 = x + m

x2 – 4x + 2 – m = 0

Ta có: ∆’ = (–2)2 – (2 – m) = m + 2

Để d) và (P) cắt nhau tại hai điểm phân biệt thì ∆’ > 0

\( \Leftrightarrow m + 2 > 0\)

\( \Leftrightarrow m > - 2\)

Vậy m > –2 thì (d) và (P) cắt nhau tại hai điểm phân biệt.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC vuông tại A có đường cao AH biết AC = 20 cm, BH = 9 cm. Tính BC và AH?

Xem lời giải »


Câu 2:

Tìm tập hợp các giá trị của tham số thực m để hàm số \(y = \sqrt {{x^2} + 1} - m{\rm{x}} - 1\) đồng biến trên ℝ

Xem lời giải »


Câu 3:

Cho hàm số y = (2m – 1)x + 3 – m có đồ thị (d). Xác định m để đường thẳng (d) song song với đồ thị hàm số y = 2x + 5.

Xem lời giải »


Câu 4:

Tìm giá trị thực của tham số m để đường thẳng d: y = (2m – 1)x + 3 + m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1.

Xem lời giải »


Câu 5:

Tìm x, biết: 6x3 + x2 = 2x.

Xem lời giải »