0 với mọi x Î (a; b); ">
X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y = f (x) có đạo hàm trên khoảng (a; b). Mệnh đề nào sau đây sai


Câu hỏi:

Cho hàm số y = f (x) có đạo hàm trên khoảng (a; b). Mệnh đề nào sau đây sai?

A Nếu f ¢(x) > 0, "x Î (a; b) thì hàm số y = f (x) đồng biến trên (a; b);

B. Nếu f ¢(x) = 0, "x Î (a; b) thì hàm số y = f (x) không đổi trên (a; b);

C. Nếu hàm số y = f (x) nghịch biến trên (a; b) thì f ¢(x) ≤ 0 với mọi x Î (a; b);

D. Nếu hàm số y = f (x) đồng biến trên (a; b) thì f ¢(x) > 0 với mọi x Î (a; b);

Trả lời:

Đáp án đúng là: D

• Nếu f ¢(x) > 0, "x Î (a; b) thì hàm số y = f (x) đồng biến trên (a; b)

Vậy mệnh đề A là đúng.

• Nếu f ¢(x) = 0, "x Î (a; b) thì hàm số y = f (x) không đổi trên (a; b)

Vậy mệnh đề B là đúng.

• Nếu hàm số y = f (x) nghịch biến trên (a; b) thì f ¢(x) ≤ 0 với mọi x Î (a; b)

Vậy mệnh đề C là đúng.

• Nếu hàm số y = f (x) đồng biến trên (a; b) thì f ¢(x) ≥ 0 với mọi x Î (a; b)

Vậy mệnh đề D là sai.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tính tỉ số thể tích của khối chóp S.MNPQ và khối chóp S.ABCD.

Xem lời giải »


Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB. Tính tỉ số thể tích \(\frac{{{V_{S.CDMN}}}}{{{V_{S.CDAB}}}}\).

Xem lời giải »


Câu 7:

Cho tứ diện ABCD có thể tích bằng V, hai điểm M và P lần lượt là trung điểm AB, CD điểm N thuộc AD sao cho AD = 3AN. Tính thể tích tứ diện BMNP.

Xem lời giải »


Câu 8:

Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không trùng trung điểm cạnh BC). Tìm thiết diện của tứ diện cắt bởi mặt phẳng (MNP).

Xem lời giải »