X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y = f(x) = mx^2 + 2(m - 6)x + 2. Có bao nhiêu giá trị nguyên của m để f(x)


Câu hỏi:

Cho hàm số y = f(x) = mx2 + 2(m – 6)x + 2. Có bao nhiêu giá trị nguyên của m để f(x) nghịch biến trên khoảng (–∞; 2)?

Trả lời:

Ta có: \(\frac{{ - b}}{{2a}} = \frac{{ - 2\left( {m - 6} \right)}}{{2m}} = \frac{{6 - m}}{m}\)

Nếu m > 0 thì hàm số nghịch biến trên khoảng (−∞; 6 – m)

Hàm số nghịch biến trên (−∞; 2)

2m ≤ 6 − m

3m ≤ 6

m ≤ 2

Do đó 0 < m ≤ 2

Nếu m = 0 thì hàm số là y = −12x + 2 nghịch biến trên ℝ nên cũng nghịch biến trên (− ∞; 2).

Nếu m < 0 thì hàm số nghịch biến trên (6 – m ; + ∞) nên không thể nghịch biến trên (− ∞; 2).

Vậy 0 ≤ m ≤ 2 nên có 3 giá trị nguyên của m.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tất cả giá trị của tham số m để hàm số y = mx2 – (m + 6)x nghịch biến trên khoảng (–1; +∞).

Xem lời giải »


Câu 2:

Tính bằng cách thuận tiện: \(\frac{1}{4}:0,25 - \frac{1}{8}:0,125 + \frac{1}{2}:0,5 - \frac{1}{{10}}\).

Xem lời giải »


Câu 3:

Xe thứ nhất chở được 25 tấn hàng, xe thứ hai chở 35 tấn hàng, xe thứ ba chở bằng trung bình cộng 3 xe. Hỏi xe thứ 3 chở bao nhiêu tấn hàng?

Xem lời giải »


Câu 4:

A = {1; 2; 3; …; 16}. Bốc ngẫu nhiên 3 phần tử trong A. Tính xác suất để để tổng 3 số bốc ra chia hết cho 3.

Xem lời giải »


Câu 5:

Biện luận theo m, số nghiệm của phương trình x3 – 3x2 – m = 0.

Xem lời giải »


Câu 6:

Cho tam giác ABC có AB = AC. Gọi I là trung điểm của BC, trên tia đối của tia IA lấy điểm D sao cho ID = IA.

a) Chứng minh ∆ABI = ∆ACI.

b) Chứng minh AC // BD.

c) Kẻ IK vuông góc với AB (K thuộc AB), IH vuông góc với CD (H thuộc CD). Chứng minh IK = IH.

Xem lời giải »


Câu 7:

Cho tam giác ABC có AC = 2. Gọi M là trung điểm của AB và D là chân đường phân giác trong góc A của tam giác ABC. Hãy tính độ dài AB để trung tuyến CM vuông góc với phân giác AD.

Xem lời giải »


Câu 8:

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.

a) Chứng minh: ∆MAB = ∆MDC.

b) Chứng minh: AB // CD và ∆ABC = ∆CDA.

c) Chứng minh: ∆BDC là tam giác vuông.

Xem lời giải »