X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y = (x - m)^3 - 3x + m^2 có đồ thị là (Cm) với m là tham số thực


Câu hỏi:

Cho hàm số  y = (x – m)3 – 3x + m2 có đồ thị là (Cm) với m là tham số thực. Biết điểm M(a; b) là điểm cực đại của (Cm) ứng với một giá trị m thích hợp, đồng thời là điểm cực tiểu của (Cm) ứng với một giá trị khác của m. Tổng  S = 2018a + 2020b bằng

A. 504;

B. −504;

C. 12 504;

D. 5 004.

Trả lời:

Đáp án đúng là: A

Vì điểm M(a; b) thuộc đồ thị (Cm) nên ta có:

(a – m)3 – 3a + m2 = b, \(\forall \)m ℝ (1)

Xét y’ = 3(x – m)2 – 3; y’ = 0 \( \Leftrightarrow \left[ \begin{array}{l}x = m - 1\\x = m + 1\end{array} \right.\)

Bảng biến thiên:

Cho hàm số  y = (x - m)^3 - 3x +  m^2 có đồ thị là (Cm) với m là tham số thực (ảnh 1)

Dựa vào bảng biến thiên, ta có:

Nếu m1 là giá trị của tham số để đồ thị hàm số nhận điểm M(a; b) là điểm cực đại thì a = m1 – 1.

Nếu m2 là giá trị của tham số m để đồ thị hàm số nhận điểm M(a; b) là điểm cực tiểu thì a = m2 + 1

Do đó m1 = a + 1; m2 = a – 1.

Mà m1, m2 phải thỏa mãn (1) nên ta có:

\(\left\{ \begin{array}{l} - 1 - 3a + {\left( {a + 1} \right)^2} = b\\1 - 3a + {\left( {a - 1} \right)^2} = b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = \frac{{ - 1}}{4}\end{array} \right.\).

Vậy S = 2018a + 2020b = 504.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tập xác định D của hàm số y = ln(x – 1).

Xem lời giải »


Câu 2:

Tìm tập xác định D của hàm số y = ln(x – 3).

Xem lời giải »


Câu 3:

Tìm m để phương trình cos2x + 2(m + 1)sinx − 2m – 1 = 0 có đúng 3 nghiệm x (0; π).

Xem lời giải »


Câu 4:

Tìm m để phương trình 2sin2x – (2m + 1)sinx + 2m – 1 = 0 có nghiệm thuộc khoảng t (−1; 0).

Xem lời giải »


Câu 5:

Có hai dãy ghế đối diện nhau, mỗi dãy có ba ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng

Xem lời giải »


Câu 6:

Cho hai dãy ghế đối diện nhau mỗi dãy có 5 ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam, 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ.

Xem lời giải »


Câu 7:

Cho ba điểm A, B, C cùng thuộc một mặt cầu và biết rằng \(\widehat {ACB} = 90^\circ \). Khẳng định nào sau đây là đúng?

Xem lời giải »


Câu 8:

Cho tam thức f(x) = ax2 + bx + c, (a ≠ 0), ∆ = b2 – 4ac. Ta có f(x) ≤ 0, x ℝ khi và chỉ khi:

Xem lời giải »