X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số  y=x^3+ax^2+bx+c và giả sử A,B là hai điểm cực trị


Câu hỏi:

Cho hàm số  y=x3+ax2+bx+c và giả sử A,B là hai điểm cực trị của đồ thị hàm số. Khi đó, điều kiện nào sau đây cho biết đường thẳng AB đi qua gốc tọa độ O?

A. c=0

B. 9+2b=3a

C. ab=9c

D. a=0

Trả lời:

Ta có  y'=3x2+2ax+b.

Thực hiện phép chia y cho y', ta được y=13x+19a.y'+23b29a2x+c19ab.

Suy ra phương trình đường thẳng  AB là:  y=23b29a2x+c19ab.

Do AB đi qua gốc tọa độ  Oc19ab=0ab=9c. Chọn C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Gọi  x1,  x2 là hai điểm cực trị của hàm số  y=x33mx2+3m21xm3+m. Tìm các giá trị của tham số m để  x12+x22x1x2=7.

Xem lời giải »


Câu 2:

Gọi  x1,  x2  là hai điểm cực trị của hàm số  y=4x3+mx23x. Tìm các giá trị thực của tham số m để  x1+4x2=0.

Xem lời giải »


Câu 3:

Cho hàm số  y=x33x29x+m. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

Xem lời giải »


Câu 4:

Cho hàm số  y=13x3m+2x2+2m+3x+2017 với m là tham số thực. Tìm tất cả các giá trị của m để x=1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

Xem lời giải »


Câu 5:

Cho hàm số  y=x33x2mx+2 với m là tham số thực. Tìm giá trị của m để đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng  d:x+4y5=0 một góc  α=450.

Xem lời giải »


Câu 6:

Cho hàm số  y=13x3mx2+2m1x3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có điểm cực đại và cực tiểu nằm cùng một phía đối với trục tung.

Xem lời giải »


Câu 7:

Cho hàm số  y=2x33m+1x2+6mx+m3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có hai điểm cực trị A, B thỏa mãn  AB=2.

Xem lời giải »


Câu 8:

Cho hàm số  y=x33mx2+4m22 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị A,B sao cho I(1;0) là trung điểm của đoạn thẳng AB.

Xem lời giải »