X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y=x^4-2(m^2-m+1)x^2+m-1  với m là tham số thực.


Câu hỏi:

Cho hàm số y=x42m2m+1x2+m1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có một điểm cực đại và hai điểm cực tiểu, đồng thời khoảng cách giữa hai điểm cực tiểu ngắn nhất.

A. m=12

B. m=12

C. m=32

D. m=32

Trả lời:

Ta có y'=4x34m2m+1x=4xx2m2m+1;  y'=0x=0x=±m2m+1.

Suy ra đồ thị có hai điểm cực tiểu là Am2m+1;yCT Bm2m+1;yCT.

Khi đó AB2=4m2m+1=4m122+343. Dấu "=" xảy ra m=12. Chọn B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Gọi  x1,  x2 là hai điểm cực trị của hàm số  y=x33mx2+3m21xm3+m. Tìm các giá trị của tham số m để  x12+x22x1x2=7.

Xem lời giải »


Câu 2:

Gọi  x1,  x2  là hai điểm cực trị của hàm số  y=4x3+mx23x. Tìm các giá trị thực của tham số m để  x1+4x2=0.

Xem lời giải »


Câu 3:

Cho hàm số  y=x33x29x+m. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

Xem lời giải »


Câu 4:

Cho hàm số  y=13x3m+2x2+2m+3x+2017 với m là tham số thực. Tìm tất cả các giá trị của m để x=1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

Xem lời giải »


Câu 5:

Cho hàm số y=x42mx2+2 với m là tham số thực. Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có ba điểm cực trị A,B,C thỏa mãn OA.OB.OC=12 với O là gốc tọa độ?

Xem lời giải »


Câu 6:

Cho hàm số y=x4+2mx24 có đồ thị là Cm. Tìm tất cả các giá trị thực của tham số m để tất cả các điểm cực trị của Cm đều nằm trên các trục tọa độ.

Xem lời giải »


Câu 7:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=x42mx2+1 có ba điểm cực trị A0;1, B, C thỏa mãn BC=4.

Xem lời giải »


Câu 8:

Cho hàm số y=x42m+1x2+m2 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.

Xem lời giải »