X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y=x^4-2mx^2+2  với m là tham số thực.


Câu hỏi:

Cho hàm số y=x42mx2+2 với m là tham số thực. Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có ba điểm cực trị A,B,C thỏa mãn OA.OB.OC=12 với O là gốc tọa độ?

A. 2

B. 1

C. 0

D. 4

Trả lời:

Để hàm số có ba điểm cực trị ab<01.2m<0m>0.

Khi dó y'=4x34mx=4xx2m; y'=0x=0x=mx=m

Suy ra tọa độ các điểm cực trị của đồ thị hàm số là: A0;2, Bm;m2+2, Cm;m2+2.

Ycbt OA.OB.OC=122.m+m2+22=12m=2 có một giá trị nguyên.

Chọn B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Gọi  x1,  x2 là hai điểm cực trị của hàm số  y=x33mx2+3m21xm3+m. Tìm các giá trị của tham số m để  x12+x22x1x2=7.

Xem lời giải »


Câu 2:

Gọi  x1,  x2  là hai điểm cực trị của hàm số  y=4x3+mx23x. Tìm các giá trị thực của tham số m để  x1+4x2=0.

Xem lời giải »


Câu 3:

Cho hàm số  y=x33x29x+m. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

Xem lời giải »


Câu 4:

Cho hàm số  y=13x3m+2x2+2m+3x+2017 với m là tham số thực. Tìm tất cả các giá trị của m để x=1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

Xem lời giải »


Câu 5:

Cho hàm số y=x4+2mx24 có đồ thị là Cm. Tìm tất cả các giá trị thực của tham số m để tất cả các điểm cực trị của Cm đều nằm trên các trục tọa độ.

Xem lời giải »


Câu 6:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=x42mx2+1 có ba điểm cực trị A0;1, B, C thỏa mãn BC=4.

Xem lời giải »


Câu 7:

Cho hàm số y=x42m+1x2+m2 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.

Xem lời giải »


Câu 8:

Tìm giá trị thực của tham số m sao cho đồ thị của hàm số y=x4+2mx2+1 có ba điểm cực trị tạo thành tam giác vuông cân.

Xem lời giải »