X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y=2x^3+mx^2-12x-13  với m là tham số thực.


Câu hỏi:

Cho hàm số  y=2x3+mx212x13 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị cách đều trục tung.

A. m=2

B. m=-1

C. m=1

D. m=0

Trả lời:

Ta có  y'=6x2+2mx12.

Do  Δ'=m2+72>0, m nên hàm số luôn có hai điểm cực trị x1, x2 với  x1, x2 là hai nghiệm của phương trình  y'=0. Theo định lí Viet, ta có  x1+x2=m3.  

Gọi  Ax1;y1 và  Bx2;y2 là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán  x1=x2x1=x2 (do  x1x2)

 x1+x2=0m3=0m=0. Chọn D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Gọi  x1,  x2 là hai điểm cực trị của hàm số  y=x33mx2+3m21xm3+m. Tìm các giá trị của tham số m để  x12+x22x1x2=7.

Xem lời giải »


Câu 2:

Gọi  x1,  x2  là hai điểm cực trị của hàm số  y=4x3+mx23x. Tìm các giá trị thực của tham số m để  x1+4x2=0.

Xem lời giải »


Câu 3:

Cho hàm số  y=x33x29x+m. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

Xem lời giải »


Câu 4:

Cho hàm số  y=13x3m+2x2+2m+3x+2017 với m là tham số thực. Tìm tất cả các giá trị của m để x=1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

Xem lời giải »


Câu 5:

Cho hàm số  y=x3+3mx23m1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d:x+8y74=0.

Xem lời giải »


Câu 6:

Cho hàm số y=13x3m+1x2+2m+1x43 với m>0 là tham số thực. Tìm giá trị của m để đồ thị hàm số có điểm cực đại thuộc trục hoành.

Xem lời giải »


Câu 7:

Tìm tất cả các giá trị thực của tham số m để hàm số fx=2x33x2m có các giá trị cực trị trái dấu.

Xem lời giải »


Câu 8:

Cho hàm số  y=x3+3x2+mx+m2 với m là tham số thực, có đồ thị là  Cm. Tìm tất cả các giá trị của m để  Cm có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.

Xem lời giải »