X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Tam giác


Câu hỏi:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp S.ABCD bằng \[\frac{{4{a^3}}}{3}\]. Gọi α là góc giữa SC và mặt đáy. Tính tan α.

Trả lời:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Tam giác (ảnh 1)

Gọi H là trung điểm của AB

Þ SH AB (do ΔSAB cân tại S)

Ta có: (SAB) (ABCD)

(SAB) ∩ (ABCD) = AB

SH AB; SH (SAB)

Þ SH (ABCD)

Hay H là hình chiếu của S lên mặt phẳng (ABCD)

Þ CH là hình chiếu của SC lên mặt phẳng (ABCD)

Do đó góc giữa SC và mặt đáy là \[\widehat {SCH} = \alpha \].

Ta có:

\[{V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}}\]

\[ \Leftrightarrow \frac{{4{a^3}}}{3} = \frac{1}{3}SH.4{a^2} \Leftrightarrow SH = a\]

Xét tam giác BHC vuông tại B, theo định lý Py-ta-go, ta có:

\[HC = \sqrt {B{H^2} + B{C^2}} = \sqrt {{a^2} + 4{a^2}} = a\sqrt 5 \]

Xét tam giác SHC vuông tại H có:

\[\tan \widehat {SCH} = \frac{{SH}}{{HC}} = \frac{a}{{a\sqrt 5 }} = \frac{1}{{\sqrt 5 }}\]

Vậy \[\tan \widehat {SCH} = \frac{1}{{\sqrt 5 }}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Tính đạo hàm của hàm số tại điểm x0 sau:

y = 7 + x – x2, với x0 = 1.

Xem lời giải »


Câu 6:

Tính các đạo hàm của hàm số sau: y = (2x – 3)(x– 2x)

Xem lời giải »


Câu 7:

Cho các tập hợp: \[A = ( - \infty ;m)\] và B = [3m – 1; 3m + 1]. Tìm giá trị m để A Ç B = Æ.

Xem lời giải »


Câu 8:

Trong hệ tọa độ Oxy cho tam giác ABC có A(3; 5); B(1; 2) và C(5; 2). Tìm tọa độ trọng tâm G của tam giác ABC?

Xem lời giải »