X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

d) Chứng minh rằng MN là đường trung trực của AC.


Câu hỏi:

d) Chứng minh rằng MN là đường trung trực của AC.

Trả lời:

d) DASP vuông tại A có trung tuyến AN, suy ra AN=12SP

DCSP vuông tại C có trung tuyến CN, suy ra   CN=12SP

Do đó AN = CN

Hay N thuộc trung trực của AC                               (1)

DAQR vuông tại A có trung tuyến AM, suy ra AM=12QR

DCQR vuông tại C có trung tuyến CM, suy ra CM=12QR

Do đó AM = CM

Hay M thuộc trung trực của AC                               (2)

Từ (1) và (2) suy ra MN là trung trực của AC

Vậy MN là trung trực của AC.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính nhanh: (–25) . (75 – 45) – 75 . (45 – 25).

Xem lời giải »


Câu 2:

Chứng tỏ: ab¯.101=abab¯

Xem lời giải »


Câu 3:

Với mỗi số nguyên dương n, kí hiệu Slà tổng của n số nguyên tố đầu tiên (S1 = 2; S2 = 2 + 3 = 5; S3 = 2 + 3 + 5 = 10; ...).

Chứng minh rằng trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.

Xem lời giải »


Câu 4:

Thắng có 25 viên bi xanh và 15 viên bi đỏ. Hỏi tỉ số phần trăm của số bi đỏ và số bi xanh.

Xem lời giải »


Câu 5:

e) Chứng minh rằng bốn điểm M, B, N, D thẳng hàng.

Xem lời giải »


Câu 6:

Cho hình thoi ABCD có cạnh a, có BAD^=60° . Gọi O là giao điểm của 2 đường chéo. Tính AB+AD,BABC,OBDC.

Xem lời giải »


Câu 7:

Tính chu vi và diện tích hình tròn có bán kính 4 cm.

Xem lời giải »


Câu 8:

Hỏi có bao nhiêu phân số thập phân khác 0 mà tổng của mẫu số và tử số là số lẻ nhỏ nhất có tám chữ số?

Xem lời giải »