X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O)


Câu hỏi:

Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) và (O'), góc giữa AB và CD bằng 30°, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:

Trả lời:

Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) (ảnh 1)

Gọi A', B' lần lượt là hình chiếu của A, B lên đường tròn (O).

C', D' lần lượt là hình chiếu của C, D lên đường tròn (O').

Suy ra AC'BD' là hình bình hành, lại có AB = CD = C'D' nên AC'BD' là hình chữ nhật.

Khi đó AC'BD'.A'CB'D là hình hộp chữ nhật.

Ta có: VAC'BD'.A'CB'D = VA.BCD + VA.A'CD + VB.B'CD + VC.C'AB + VD.D'AB

\({V_{A.A'CD}} = \frac{1}{3}AA'\,.\,{S_{A'CD}} = \frac{1}{3}AA'\,.\,\frac{1}{2}{S_{A'CB'D}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\)

Chứng minh tương tự ta có: \({V_{B.B'CD}} = {V_{C.C'AB}} = {V_{D.D'AB}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\)

\[ \Rightarrow {V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + 4\,.\,\frac{1}{6}{V_{AC'BD'.A'CB'D}}\]

\[ \Rightarrow {V_{ABCD}} = \frac{1}{3}{V_{AC'BD'.A'CB'D}} = 30\]

Þ VAC'BD'.A'CB'D = 90.

Theo bài ra ta có: \(\left( {\widehat {AB;\;CD}} \right) = 30^\circ \Rightarrow \left( {\widehat {AB;\;C'D'}} \right) = 30^\circ \).

Giả sử \(\left( {\widehat {AB;\;C'D'}} \right) = \widehat {AOC'} = 30^\circ \).

Lại có: \[OA = OC' = \frac{1}{2}AB = 3\]

\( \Rightarrow {S_{OAC'}} = \frac{1}{2}OA\,.\,OC'\,.\,\sin \widehat {AOC'} = \frac{1}{2}\,.\,3\,.\,3\,.\,\sin 30^\circ = \frac{9}{4}\)

Þ SAC'BD' = 4SOAC' = 9.

Ta có: VAC'BD'.A'CB'D = AA'.SAC'BD'

Þ 90 = AA'.9 Û AA' = 10.

Vậy thể tích khối trụ là:

V = pr2h = p.OA2.AA' = p.32.10 = 90p.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Tìm m để phương trình cos 2x − (2m − 1)cos x − 2m = 0 có nghiệm \(x \in \left( { - \frac{\pi }{2};\;\frac{\pi }{2}} \right)\).

Xem lời giải »


Câu 6:

Tìm tất cả giá trị thực của tham số m để phương trình cos 2x − (2m + 1)cos x + m + 1 = 0 có nghiệm trên khoảng \(\left( {\frac{\pi }{2};\;\frac{{3\pi }}{2}} \right)\).

Xem lời giải »


Câu 7:

Có bao nhiêu số tự nhiên có 9 chữ số đôi một khác nhau sao cho có mặt đồng thời bốn chữ số 4; 5; 6; 7 và bốn chữ số đó đôi một không kề nhau?

Xem lời giải »


Câu 8:

Có bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau?

Xem lời giải »