X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho M(4; 1); (d) là đường thẳng luôn đi qua M và cắt Ox, Oy theo thứ tự tại A(a; 0); B


Câu hỏi:

Cho M(4; 1); (d) là đường thẳng luôn đi qua M và cắt Ox, Oy theo thứ tự tại A(a; 0); B(0; b). Hãy viết phương trình đường thẳng (d) sao cho SOAB = 2.

Trả lời:

Đường thẳng AB đi qua A(a; 0); B(0; b) nên có phương trình: \(\frac{x}{a} + \frac{y}{b} = 1\).

M(4; 1) thuộc AB nên \(\frac{4}{a} + \frac{1}{b} = 1\) (1).

Tam giác AOB vuông tại O nên có diện tích là:

SOAB = \(\frac{1}{2}.OA.OB = \frac{1}{2}ab = 2\). Suy ra: ab = 4. (2).

Từ (1) và (2) ta có:

\(\left\{ \begin{array}{l}\frac{4}{a} + \frac{1}{b} = 1\\ab = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4b + a = ab\\ab = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4 - 4b\\b\left( {4 - 4b} \right) - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4 - 4b\\ - 4{b^2} + 4b - 4 = 0\end{array} \right.\)

\(\left\{ \begin{array}{l}a = 4 - 4b\\ - \left( {4{b^2} - 4b + 4} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4 - 4b\\ - \left( {4{b^2} - 4b + 4} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4 - 4b\\ - {\left( {2b - 1} \right)^2} - 3 = 0\end{array} \right.\).

Ta thấy –(2b – 1)2 – 3 – 3 với mọi b nên phương trình –(2b – 1)2 – 3 = 0 vô nghiệm.

Vậy không có đường thẳng (d) thỏa mãn.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).

Xem lời giải »


Câu 2:

Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.

Xem lời giải »


Câu 3:

Tìm x biết: (4x – 3)2 – 3x(3 – 4x) = 0.

Xem lời giải »


Câu 4:

Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).

Xem lời giải »


Câu 5:

Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm)

a) Chứng minh OC BD.

b) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn.

c) Chứng minh \(\widehat {CMD} = \widehat {CDA}\).

d) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.

Xem lời giải »