X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho nửa đường tròn (O; R) đường kính AB, vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Trên tia Ax lấy điểm E (E khác A, AE < R), trên nửa đường tròn lấy điểm M sao cho EM = EA, đường thẳng EM


Câu hỏi:

Cho nửa đường tròn (O; R) đường kính AB, vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Trên tia Ax lấy điểm E (E khác A, AE < R), trên nửa đường tròn lấy điểm M sao cho EM = EA, đường thẳng EM cắt tia By tại F.

a) Chứng minh EF là tiếp tuyến của đường tròn (O).

b) Chứng minh tam giác EOF là tam giác vuông.

c) Chứng minh AM.OE + BM.OF = AB.EF.

d) Tìm vị trí điểm E trên tia Ax sao cho \({S_{\Delta AMB}} = \frac{3}{4}{S_{\Delta EOF}}\).

Trả lời:

Lời giải

Media VietJack

a) Xét ∆AOE và ∆MOE, có:

AO = MO = R;

AE = ME (giả thiết);

OE chung.

Do đó ∆AOE = ∆MOE (c.c.c).

Suy ra \(\widehat {EAO} = \widehat {EMO} = 90^\circ \).

Vậy EF là tiếp tuyến của đường tròn (O).

b) Ta có MF, BF là hai tiếp tuyến của (O).

Suy ra OF là tia phân giác của \(\widehat {MOB}\).

Do đó \(\widehat {MOF} = \widehat {BOF} = \frac{1}{2}\widehat {MOB}\).

Chứng minh tương tự, ta được \(\widehat {AOE} = \widehat {EOM} = \frac{1}{2}\widehat {AOM}\).

Ta có \(\widehat {AOM} + \widehat {MOB} = 180^\circ \) (kề bù).

\( \Rightarrow 2\widehat {EOM} + 2\widehat {MOF} = 180^\circ \).

\( \Rightarrow 2\left( {\widehat {EOM} + \widehat {MOF}} \right) = 180^\circ \).

\( \Rightarrow \widehat {EOF} = 180^\circ :2 = 90^\circ \).

Vậy tam giác EOF vuông tại O.

c) Ta có EA = EM (giả thiết) và OM = OA (= R).

Suy ra OE là đường trung trực của đoạn AM.

Do đó OE AM.

Mà MA MB (\(\widehat {AMB} = 90^\circ \) do \(\widehat {AMB}\) là góc nội tiếp chắn nửa đường tròn (O)).

Vì vậy OE // MB.

Suy ra \(\widehat {MOE} = \widehat {OMB}\) (so le trong).

Mà \(\widehat {ABM} = \widehat {OMB}\) (do tam giác OMB cân tại O).

Do đó \(\widehat {MOE} = \widehat {ABM}\).

Mà \(\widehat {EMO} = \widehat {AMB} = 90^\circ \).

Vì vậy  (g.g).

Suy ra \(\frac{{EM}}{{AM}} = \frac{{OE}}{{AB}}\).

Do đó EM.AB = AM.OE     (1)

Chứng minh tương tự, ta được FM.AB = BM.OF    (2)

Từ (1), (2), suy ra AM.OE + BM.OF = AB.(EM + FM) = AB.EF.

Vậy ta có điều phải chứng minh.

d) Kẻ MH AB tại H.

Ta có \(\widehat {MBA} = \widehat {OFB}\) (cùng phụ với \(\widehat {FOB}\)).

Mà \(\widehat {OFM} = \widehat {OFB}\) (do FO là tia phân giác của \(\widehat {MFB}\)).

Suy ra \(\widehat {MBA} = \widehat {OFE}\).

Mà \(\widehat {AMB} = \widehat {OEF} = 90^\circ \).

Do đó  (g.g).

Suy ra \(\frac{{{S_{AMB}}}}{{{S_{EOF}}}} = {\left( {\frac{{MH}}{{OM}}} \right)^2} = \frac{3}{4}\).

Khi đó \(\frac{{MH}}{{OM}} = \frac{{\sqrt 3 }}{2}\).

Vì vậy \(\sin \widehat {MOH} = \frac{{\sqrt 3 }}{2}\).

Suy ra \(\widehat {MOH} = 60^\circ \).

Do đó \(\widehat {MOE} = \widehat {AOE} = 30^\circ \).

Ta có \(AE = OA.\tan \widehat {AOE} = OA.\tan 30^\circ = \frac{{\sqrt 3 }}{3}OA\).

Vậy E nằm trên tia Ax sao cho \(AE = \frac{{\sqrt 3 }}{3}OA\) thỏa mãn yêu cầu bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Biết rằng \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}},\,\,\,\,\,\,x \ne \pi \\m,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \pi \end{array} \right.\) liên tục tại x = π.

Xem lời giải »


Câu 2:

Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

Xem lời giải »


Câu 3:

Chứng minh rằng với mọi góc α (0° ≤ α ≤ 180°), ta đều có sin2α + cos2α = 1.

Xem lời giải »


Câu 4:

So le ngoài là như thế nào? Lấy ví dụ.

Xem lời giải »


Câu 5:

Lấy một điểm M tùy ý. Chứng minh rằng: G là trọng tâm của tam giác ABC khi và chỉ khi \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).

Xem lời giải »


Câu 6:

Ba bạn Hồng, Hoa, Lan có tất cả 134 cái bưu ảnh. Biết rằng số bưu ảnh của Hoa nhiều hơn Hồng 14 chiếc song lại kém Lan 16 chiếc. Tính số bưu ảnh của mỗi bạn.

Xem lời giải »


Câu 7:

Cách phân biệt góc so le trong và góc đồng vị.

Xem lời giải »


Câu 8:

Tìm \(\overline {abcd} \), biết \(\overline {abc} = 5 \times \overline {dad} \).

Xem lời giải »