Cho tam giác ABC có G là trọng tâm. Chứng minh diện tích tam ABC gấp 3 lần diện
Câu hỏi:
Cho tam giác ABC có G là trọng tâm. Chứng minh diện tích tam ABC gấp 3 lần diện tích tam giác AGC.
Trả lời:
Gọi N, M, E lần lượt là trung điểm của AB, AC và BC.
Suy ra CN, BM, AE là các đường trung tuyến của ΔABC
Do đó, CN, BM, AE cắt nhau tại G.
Áp dụng tính chất đường trung tuyến trong tam giác ta có:
\[CG = \frac{2}{3}CN\]
Xét ΔAGC và ΔANC có cùng đường cao hạ từ A xuống NC
Mà đáy \[CG = \frac{2}{3}CN\]
Suy ra \[{S_{AGC}} = \frac{2}{3}{S_{ANC}}\] (1)
Xét ΔANC và ΔABC có cùng chung chiều cao hạ từ C xuống AB
Mà đáy \[AN = \frac{1}{2}AB\] (vì N là trung điểm của AB)
Suy ra \[{S_{ANC}} = \frac{1}{2}{S_{ABC}}\] (2)
Từ (1) và (2) ta có: \[{S_{AGC}} = \frac{2}{3} \cdot \frac{1}{2}{S_{ABC}} = \frac{1}{3}{S_{ABC}}\]
Vậy diện tích tam ABC gấp 3 lần diện tích tam giác AGC.