Cho tam giác ABC, lấy các điểm M, N, P sao cho vecto MB = 3 vecto MC; vecto NA + 3 vecto NC = vec 0 và vecto PA + vecto PB = vec 0. a) Tính vecto PM , vecto PN theo vecto AB và vecto AC.
Câu hỏi:
Cho tam giác ABC, lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} \); \(\overrightarrow {NA} + 3\overrightarrow {NC} = \vec 0\) và \(\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).
a) Tính \(\overrightarrow {PM} ,\,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
b) Chứng minh rằng: M, N, P thẳng hàng.
Trả lời:
Lời giải
a) Vì \(\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\) nên P là trung điểm của AB.
Suy ra \(\overrightarrow {AP} = \overrightarrow {PB} = \frac{1}{2}\overrightarrow {AB} \).
Lại có \(\overrightarrow {MB} = 3\overrightarrow {MC} \).
Suy ra \(\overrightarrow {CM} = \frac{1}{3}\overrightarrow {BM} \).
Ta có \(\overrightarrow {BM} = \overrightarrow {BC} + \overrightarrow {CM} = \overrightarrow {BC} + \frac{1}{3}\overrightarrow {BM} \).
Suy ra \(\overrightarrow {BC} = \frac{2}{3}\overrightarrow {BM} \).
Do đó \(\overrightarrow {BM} = \frac{3}{2}\overrightarrow {BC} = \frac{3}{2}\overrightarrow {AC} - \frac{3}{2}\overrightarrow {AB} \).
Khi đó \(\overrightarrow {PM} = \overrightarrow {PB} + \overrightarrow {BM} = \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} - \frac{3}{2}\overrightarrow {AB} = - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \).
Ta có \(\overrightarrow {NA} + 3\overrightarrow {NC} = \vec 0\).
Suy ra \(\overrightarrow {AN} = 3\overrightarrow {NC} \).
Do đó \[\overrightarrow {NC} = \frac{1}{3}\overrightarrow {AN} \].
Vì vậy \(\overrightarrow {AC} = \overrightarrow {AN} + \overrightarrow {NC} = \overrightarrow {AN} + \frac{1}{3}\overrightarrow {AN} = \frac{4}{3}\overrightarrow {AN} \).
Suy ra \(\overrightarrow {AN} = \frac{3}{4}\overrightarrow {AC} \).
Ta có \(\overrightarrow {PN} = \overrightarrow {PA} + \overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).
Vậy \(\overrightarrow {PM} = - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \) và \(\overrightarrow {PN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).
b) Ta có \(\overrightarrow {PN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} = \frac{1}{2}\left( { - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {PM} \).
Vậy M, N, P thẳng hàng.