X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC, lấy các điểm M, N, P sao cho vecto MB  = 3 vecto MC; vecto NA + 3 vecto NC = vec 0 và vecto PA + vecto PB  = vec 0. a) Tính vecto PM , vecto PN theo vecto AB và vecto AC.


Câu hỏi:

Cho tam giác ABC, lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} \); \(\overrightarrow {NA} + 3\overrightarrow {NC} = \vec 0\) và \(\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).

a) Tính \(\overrightarrow {PM} ,\,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).

b) Chứng minh rằng: M, N, P thẳng hàng.

Trả lời:

Lời giải

Media VietJack

a) Vì \(\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\) nên P là trung điểm của AB.

Suy ra \(\overrightarrow {AP} = \overrightarrow {PB} = \frac{1}{2}\overrightarrow {AB} \).

Lại có \(\overrightarrow {MB} = 3\overrightarrow {MC} \).

Suy ra \(\overrightarrow {CM} = \frac{1}{3}\overrightarrow {BM} \).

Ta có \(\overrightarrow {BM} = \overrightarrow {BC} + \overrightarrow {CM} = \overrightarrow {BC} + \frac{1}{3}\overrightarrow {BM} \).

Suy ra \(\overrightarrow {BC} = \frac{2}{3}\overrightarrow {BM} \).

Do đó \(\overrightarrow {BM} = \frac{3}{2}\overrightarrow {BC} = \frac{3}{2}\overrightarrow {AC} - \frac{3}{2}\overrightarrow {AB} \).

Khi đó \(\overrightarrow {PM} = \overrightarrow {PB} + \overrightarrow {BM} = \frac{1}{2}\overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} - \frac{3}{2}\overrightarrow {AB} = - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \).

Ta có \(\overrightarrow {NA} + 3\overrightarrow {NC} = \vec 0\).

Suy ra \(\overrightarrow {AN} = 3\overrightarrow {NC} \).

Do đó \[\overrightarrow {NC} = \frac{1}{3}\overrightarrow {AN} \].

Vì vậy \(\overrightarrow {AC} = \overrightarrow {AN} + \overrightarrow {NC} = \overrightarrow {AN} + \frac{1}{3}\overrightarrow {AN} = \frac{4}{3}\overrightarrow {AN} \).

Suy ra \(\overrightarrow {AN} = \frac{3}{4}\overrightarrow {AC} \).

Ta có \(\overrightarrow {PN} = \overrightarrow {PA} + \overrightarrow {AN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).

Vậy \(\overrightarrow {PM} = - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} \) và \(\overrightarrow {PN} = - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).

b) Ta có \(\overrightarrow {PN} =  - \frac{1}{2}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} = \frac{1}{2}\left( { - \overrightarrow {AB} + \frac{3}{2}\overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {PM} \).

Vậy M, N, P thẳng hàng.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Biết rằng \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}},\,\,\,\,\,\,x \ne \pi \\m,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \pi \end{array} \right.\) liên tục tại x = π.

Xem lời giải »


Câu 2:

Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

Xem lời giải »


Câu 3:

Chứng minh rằng với mọi góc α (0° ≤ α ≤ 180°), ta đều có sin2α + cos2α = 1.

Xem lời giải »


Câu 4:

So le ngoài là như thế nào? Lấy ví dụ.

Xem lời giải »


Câu 5:

Cho tam giác ABC, lấy các điểm M, N, P thỏa mãn \(\overrightarrow {MA} + \overrightarrow {MB} = \vec 0\); \(3\overrightarrow {AN} - 2\overrightarrow {AC} = \vec 0\); \(\overrightarrow {PB} = 2\overrightarrow {PC} \). Ba điểm nào sau đây thẳng hàng?

Xem lời giải »


Câu 6:

Bác Năm dự định trồng ngô và đậu xanh trên một mảnh đất có diện tích 8 ha. Nếu trồng 1 ha ngô thì cần 20 ngày công và thu được 40 triệu đồng. Nếu trồng 1 ha đậu xanh thì cần 30 ngày công và thu được 50 triệu đồng. Bác Năm cần trồng bao nhiêu hecta cho mỗi loại cây để thu được nhiều tiền nhất? Biết rằng, bác Năm chỉ có thể sử dụng không quá 180 ngày công cho việc trồng ngô và đậu xanh.

Xem lời giải »


Câu 7:

Lớp 10B có 45 học sinh. Trong kì thi học kì I có 20 em đạt loại giỏi môn Toán; 18 em đạt loại giỏi môn Tiếng Anh; 17 em đạt loại giỏi môn Ngữ văn; 5 em đạt loại giỏi cả ba môn học trên và 7 em không đạt loại giỏi môn nào trong ba môn học trên. Số học sinh chỉ đạt loại giỏi một trong ba môn học trên là:

Xem lời giải »


Câu 8:

Trong lớp 10B có 45 học sinh, 25 học sinh thích môn Văn, 20 học sinh thích môn Toán, 18 học sinh thích môn Sử, 6 học sinh không thích môn nào, 5 học sinh thích cả 3 môn. Hỏi số học sinh chỉ thích một trong 3 môn trên?

Xem lời giải »