X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, tron


Câu hỏi:

Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V.

Trả lời:

Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V. (ảnh 1)

Ta có: VACMNPQ = VEAMNC – VEACPQ

 VEACPQ=13dE,  (ACPQ).SACPQ=13dE,(ACD).SACDSDPQ

=13dB,(ACD)  .  SACD19SACD=89VABCD

(Vì P, Q là trọng tâm của ΔBCE và ΔABE)

 VACMNPQ=1118VABCD=1118a3212=112a3216

Vậy VACMNPQ=112a3216 .

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm giao điểm 2 đường tròn (C1): x2 + y2 – 4 = 0 và (C2): x2   +  y2   4x   4y  +  4  =  0.

Xem lời giải »


Câu 2:

Khẳng định nào sau đây sai?

Xem lời giải »


Câu 3:

Câu nào trong các câu sau không phải là mệnh đề?

Xem lời giải »


Câu 4:

Cho hình thang ABCD vuông góc tại A và B, có AD = 2a, AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S. Gọi C’, D’ lần lượt là hình chiếu vuông góc của A trên SC và SD. Chứng minh rằng SBC^=SCD^=90°.

Xem lời giải »


Câu 5:

Cho hình nón N1 có chiều cao bằng 40 cm. Người ta cắt hình nón N1 bằng một mặt phẳng song song với đáy của có để được một hình nón nhỏ N2 có thể tích bằng 18 thể tích N1. Tính chiều cao của hình nón N2.

Xem lời giải »


Câu 6:

Cho hàm số y = f(x) có đạo hàm f'(x) = x2(x − 1)(x + 2)2(x − 2). Tìm số điểm cực trị của hàm số đã cho.

Xem lời giải »


Câu 7:

Vẽ đồ thị hàm số y = x2.

Xem lời giải »


Câu 8:

Vẽ đồ thị các hàm số y = –x ² và y = x – 2 trên cùng một hệ trục tọa độ.

Xem lời giải »