Cho x, y là các số thực không âm thỏa mãn: x^2 - 2xy + x - 2y < = 0. Tìm GTLN
Câu hỏi:
Cho x, y là các số thực không âm thỏa mãn: x2 − 2xy + x − 2y ≤ 0. Tìm GTLN của M = x2 − 5y2 + 3x.
Trả lời:
Ta có: x2 − 2xy + x − 2y ≤ 0
Û x(x − 2y) + (x − 2y) ≤ 0
Û (x − 2y)(x + 1) ≤ 0.
Mà do x, y là các số thực không âm nên x + 1 > 0.
Khi đó x − 2y ≤ 0 Û x ≤ 2y.
Với x, y là các số thực không âm nên ta có:
M = x2 − 5y2 + 3x ≤ (2y)2 − 5y2 + 3.(2y)
= −y2 + 6y = −y2 + 6y − 9 + 9
= −(y − 3)2 + 9 ≤ 9, "y
Dấu “=” xảy ra Û y − 3 = 0 Û y = 3.
Vậy GTLN của M là 9 khi y = 3 và x = 2.3 = 6.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).
Xem lời giải »
Câu 2:
Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).
Xem lời giải »
Câu 3:
Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.
Xem lời giải »
Câu 4:
Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.
Xem lời giải »
Câu 5:
Giải phương trình \(3\sin 3x + \sqrt 3 \cos 9x = 1 + 4{\sin ^3}3x\).
Xem lời giải »
Câu 6:
Giải phương trình: \(3\sin 3x - \sqrt 3 \cos 9x = 1 + 4{\sin ^3}3x\).
Xem lời giải »
Câu 7:
Tìm số giao điểm của đồ thị hàm số y = x3 − 3x2 − 6x + 1 và trục hoành.
Xem lời giải »
Câu 8:
Với giá trị nào của m thì ba đường thẳng d1: y = x; d2: y = 4 − 3x và d3: y = mx − 3 đồng quy?
Xem lời giải »