X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho x, y là các số thực không âm thỏa mãn: x^2 - 2xy + x - 2y < = 0. Tìm GTLN


Câu hỏi:

Cho x, y là các số thực không âm thỏa mãn: x2 − 2xy + x − 2y ≤ 0. Tìm GTLN của M = x2 − 5y2 + 3x.

Trả lời:

Ta có: x2 − 2xy + x − 2y ≤ 0

Û x(x − 2y) + (x − 2y) ≤ 0

Û (x − 2y)(x + 1) ≤ 0.

Mà do x, y là các số thực không âm nên x + 1 > 0.

Khi đó x − 2y ≤ 0 Û x ≤ 2y.

Với x, y là các số thực không âm nên ta có:

M = x2 − 5y2 + 3x ≤ (2y)2 − 5y2 + 3.(2y)

= −y2 + 6y = −y2 + 6y − 9 + 9

= −(y − 3)2 + 9 ≤ 9, "y

Dấu “=” xảy ra Û y − 3 = 0 Û y = 3.

Vậy GTLN của M là 9 khi y = 3 và x = 2.3 = 6.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức P=1a+2b+3+1b+2c+3+1c+2a+3.

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: P=aa+bc+bb+ca+cc+ab.

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Giải phương trình 3sin3x+3cos9x=1+4sin33x.

Xem lời giải »


Câu 6:

Giải phương trình: 3sin3x3cos9x=1+4sin33x.

Xem lời giải »


Câu 7:

Tìm số giao điểm của đồ thị hàm số y = x3 − 3x2 − 6x + 1 và trục hoành.

Xem lời giải »


Câu 8:

Với giá trị nào của m thì ba đường thẳng d1: y = x; d2: y = 4 − 3x và d3: y = mx − 3 đồng quy?

Xem lời giải »