X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Giải phương trình 3sin3x + căn bậc hai 3 cos 9x = 1 + 4 sin^3 3x


Câu hỏi:

Giải phương trình \(3\sin 3x + \sqrt 3 \cos 9x = 1 + 4{\sin ^3}3x\).

Trả lời:

\(3\sin 3x + \sqrt 3 \cos 9x = 1 + 4{\sin ^3}3x\)

\( \Leftrightarrow \left( {3\sin 3x - 4{{\sin }^3}3x} \right) + \sqrt 3 \cos 9x = 1\)

\( \Leftrightarrow \sin 9x + \sqrt 3 \cos 9x = 1\)

\( \Leftrightarrow \frac{1}{2}\sin 9x + \frac{{\sqrt 3 }}{2}\cos 9x = \frac{1}{2}\)

\[ \Leftrightarrow \sin 9x\,.\,\cos \frac{\pi }{3} + \cos 9x\,.\,\sin \frac{\pi }{3} = \frac{1}{2}\]

\[ \Leftrightarrow \sin \left( {9x + \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\]

\( \Leftrightarrow \left[ \begin{array}{l}9x + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\9x + \frac{\pi }{3} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{54}} + \frac{{k2\pi }}{9}\\x = \frac{\pi }{{18}} + \frac{{k2\pi }}{9}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình trên có hai họ nghiệm là \(S = \left\{ { - \frac{\pi }{{54}} + \frac{{k2\pi }}{9};\;\frac{\pi }{{18}} + \frac{{k2\pi }}{9},\;k \in \mathbb{Z}} \right\}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Giải phương trình: \(3\sin 3x - \sqrt 3 \cos 9x = 1 + 4{\sin ^3}3x\).

Xem lời giải »


Câu 6:

Tìm số giao điểm của đồ thị hàm số y = x3 − 3x2 − 6x + 1 và trục hoành.

Xem lời giải »


Câu 7:

Với giá trị nào của m thì ba đường thẳng d1: y = x; d2: y = 4 − 3x và d3: y = mx − 3 đồng quy?

Xem lời giải »


Câu 8:

Tam giác đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng bao nhiêu?

Xem lời giải »