X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Chứng minh n4 + 64 là hợp số với mọi n ∈ ℤ.


Câu hỏi:

Chứng minh n4 + 64 là hợp số với mọi n ℤ.

Trả lời:

n4 + 64 = (n2 + 8)2 – (4n)2 = (n2 + 8 – 4n)(n2 + 8 + 4n)

Ta thấy: n4 + 64 chia hết cho n2 + 8 – 4n và n2 + 8 + 4n tức n4 + 64 có nhiều hơn 2 ước.

Vậy n4 + 64 là hợp số.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a3 + b3 + c3 = 3abc. Tính B = 1+ab1+bc1+ca .

Xem lời giải »


Câu 2:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a3, SA vuông góc mặt phẳng đáy và SA = a2   (minh họa hình bên). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng?

Cho hình chóp S.ABCD có đáy là hình vuông cạnh  acăn3 , SA vuông góc mặt phẳng đáy và SA =   (minh họa hình bên). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng? (ảnh 1)

Xem lời giải »


Câu 3:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc mặt phẳng đáy và SB = a5 . Tính thể tích khối chóp S.ABCD?

Xem lời giải »


Câu 4:

Cho tam giác ABC vuông tại A, biết AC = 5 cm, AB = 6 cm và = 45°. Tính các góc A^ , C^ và cạnh BC (sử dụng định lí côsin)?

Xem lời giải »


Câu 5:

Tìm các số nguyên x, y, z thỏa mãn: 3x2 + 6y2 + 2z2 + 3y2z2 – 18 = 6.

Xem lời giải »


Câu 6:

. Viết mỗi tập hợp sau bằng cách chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó.

a) A = {0; 3; 6; 9; 12; 15};

b) B = {5; 10; 15; 20; 25; 30};

Xem lời giải »


Câu 7:

Viết mỗi tập hợp sau bằng cách chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó.

c) C = {10; 20; 30; 40; 50; 60; 70; 80; 90};

d) D = {1; 5; 9; 13; 17}.

Xem lời giải »


Câu 8:

Từ các chữ số 1; 2; 3 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Xem lời giải »