Chứng minh rằng A chia hết cho 6 với A = 2 + 22 + … + 2100.
Câu hỏi:
Chứng minh rằng A chia hết cho 6 với A = 2 + 22 + … + 2100.
Trả lời:
A = 2 + 22 + … + 2100
A = (2 + 22) + (23 + 24) + … + (299 + 2100)
A = (2 + 22) + 22 (2 + 22) + … + 298 (2 + 22)
A = (2 + 22)(1 + 22 + … + 298)
A = 6 (1 + 22 + … + 298)
Vì 6 ⋮ 6 nên 6 (1 + 22 + … + 298) ⋮ 6
Vậy A ⋮ 6.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm x nguyên để A = có giá trị là số nguyên.
Xem lời giải »
Câu 4:
Tìm x sao cho x4 + 2x3 + 2x2 + x + 3 là số chính phương.
Xem lời giải »
Câu 5:
Mỗi khu đất hình chữ nhật có diện tích là 324 m2 và chiều rộng là 12 m. Tính chu vi khu đất đó.
Xem lời giải »
Câu 6:
Nhà bác Hà có 85 con gà và vịt. Sau khi bác bán đi 15 con gà và mua thêm 7 con vịt thì số vịt nhiều hơn số gà là 9 con. Hỏi lúc đầu mỗi loại có bao nhiêu con ?
Xem lời giải »
Câu 7:
Sau khi bớt ở số bị trừ đi 478 và thêm vào số trừ 235 thì hiệu hai số mới là 2084. Hỏi hiệu của hai số ban đầu là bao nhiêu?
Xem lời giải »
Câu 8:
Trung bình cộng tuổi của bố mẹ và hoa là 30. Nếu không tính tuổi của bố thì trung bình cộng tuổi của mẹ và Hoa là 24. Hỏi tuổi của bố là bao nhiêu?
Xem lời giải »