Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau đôi một trong đó có mặt chữ số 0 nhưng không có mặt chữ số 1?
Câu hỏi:
Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau đôi một trong đó có mặt chữ số 0 nhưng không có mặt chữ số 1?
Trả lời:
– Chọn vị trí cho số 0. Vì số 0 phải xuất hiện trong số đó nên ta chọn vị trí cho số 0 trước. Vì số 0 không được đứng ở vị trí đầu tiên nên ta có 5 vị trí để chọn cho số 0.
– Chọn các vị trí còn lại cho các số còn lại. Ta có 8 số còn lại để chọn (không có số 1), và ta phải chọn 5 số từ 8 số đó. Do đó, ta có cách chọn.
Vậy, số lượng số tự nhiên gồm 6 chữ số khác nhau đôi một trong đó có mặt chữ số 0 nhưng không có mặt chữ số 1 là: 5 .= 33600 (số)
Vậy có 33600 số thỏa mãn yêu cầu bài toán.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm số tự nhiên a nhỏ nhất sao cho chia a cho 3; 5; 7 được số dư theo thứ tự là 2; 3; 4.
Xem lời giải »
Câu 2:
Tìm số tự nhiên có hai chữ số biết rằng khi chia số đó cho hiệu các chữ số của nó ra được thương là 28 và dư 1.
Xem lời giải »
Câu 5:
Để lát nền một phòng học hình chữ nhật, người ta dùng loại gạch men hình vuông có cạnh 20cm. Hỏi cần bao nhiêu viên gạch để lát kín nền phòng học đó, biết rằng nền phòng học có chiều rộng 5m, chiều dài 8m và phần mạch vừa không đáng kể?
Xem lời giải »
Câu 6:
Một khu vườn hình chữ nhật có chu vi là 192m, chiều rộng bằng chiều dài.
a) Tính diện tích của khu vườn?
Xem lời giải »
Câu 7:
b) Người ta làm lối đi và đào ao thả cá trong phần đất hình chữ nhật có chiều dài 18m, chiều rộng 10m. Tính diện tích còn lại của khu vườn?
Xem lời giải »
Câu 8:
Mảnh đất hình chữ nhật có chiều rộng bằng chiều dài. Biết rằng nếu giảm chiều dài 3m và tăng chiều rộng thêm 3 m thì mảnh đất có dạng hình vuông. Tính diện tích mảnh đất hình chữ nhật đó.
Xem lời giải »