Đồ thị của hàm số y = 3x^4 – 4x^3 – 6x^2 + 12x + 1 đạt cực tiểu tại M(x1; y1)
Câu hỏi:
Đồ thị của hàm số y = 3x4 – 4x3 – 6x2 + 12x + 1 đạt cực tiểu tại M(x1; y1). Khi đó x1 + y1 bằng
A. 5
B. 6
C. -11
D. 7
Trả lời:
chọn C.
y = 3x4 – 4x3 – 6x2 + 12x + 1 => y’ = 12x3 – 12x2 – 12x + 12
y’ = 0 ó 12x3 – 12x2 – 12x + 12 = 0
bảng biến thiên
Vậy hàm số y = 3x4 – 4x3 – 6x2 + 12x + 1 đạt cực tiểu tại M(-1;-10). Khi đó x1 + y1 = -11
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Biết hàm số f(x) xác định trên R và có đạo hàm f’(x) = (x – 1)x2(x + 1)3(x + 2)4. Hỏi hàm số có bao nhiêu điểm cực trị?
Xem lời giải »
Câu 2:
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên:
Khẳng định nào sau đây là khẳng định đúng?
Xem lời giải »
Câu 3:
Cho hàm số y = mx4 – (m2 – 1)x2 + 1. Khẳng định nào sau đây là sai?
Xem lời giải »
Câu 4:
Cho các phát biểu sau:
I. Đồ thị hàm số có y = x4 – x + 2 có trục đối xứng là Oy.
II. Hàm số f(x) liên tục và có đạo hàm trên khoảng (a;b) đạt cực trị tại điểm x0 thuộc khoảng (a;b) thì tiếp tuyến tại điểm M(x0,f(x0)) song song với trục hoành.
III. Nếu f(x) nghịch biến trên khoảng (a;b) thì hàm số không có cực trị trên khoảng (a;b).
IV. Hàm số f(x) xác định và liên tục trên khoảng (a;b) và đạt cực tiểu tại điểm x0 thuộc khoảng (a;b) thì f(x) nghịch biến trên khoảng (a;x0) và đồng biến trên khoảng (x0;b).
Các phát biểu đúng là:
Xem lời giải »
Câu 5:
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị A(0;0), B(1;1) thì các hệ số a, b, c, d có giá trị lần lượt là:
Xem lời giải »
Câu 6:
Điểm cực đại của đồ thị hàm số y = x3 + 3x2 + 2 là
Xem lời giải »
Câu 7:
Khoảng cách giữa hai điểm cực đại và cực tiểu của đồ thị hàm số y = (x + 1)(x – 2)2
Xem lời giải »
Câu 8:
Tìm tất cả giá trị của m để hàm số y = 1/3.x3 – mx2 + (m2 – m + 1)x + 1 đạt cực đại tại x = 1
Xem lời giải »