X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tam giác đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R


Câu hỏi:

Tam giác đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng bao nhiêu?

Trả lời:

Xét tam giác ABC đều cạnh a và gọi M là trung điểm của BC.

Ta có: AM BC.

Suy ra diện tích tam giác ABC là:

\({S_{\Delta ABC}} = \frac{1}{2}AM\,.\,BC = \frac{1}{2}\sqrt {A{B^2} - B{M^2}} \,.\,BC = \frac{1}{2}\sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} \,.\,a = \frac{{{a^2}\sqrt 3 }}{4}\).

Mà ta có \[{S_{\Delta ABC}} = \frac{{AB\,.\,BC\,.\,CA}}{{4R}}\].

Vậy bán kính cần tìm là: \[R = \frac{{AB\,.\,BC\,.\,CA}}{{4{S_{\Delta ABC}}}} = \frac{{a\,.\,a\,.\,a}}{{4\,.\,\frac{{{a^2}\sqrt 3 }}{4}}} = \frac{{a\sqrt 3 }}{3}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Giải phương trình: \(\tan x - 3\cot x = 4\left( {\sin x + \sqrt 3 \cos x} \right)\).

Xem lời giải »


Câu 6:

Tìm GTLN, GTNN của hàm số: y = sin²x + 2sinx.cosx − cos²x + 5.

Xem lời giải »


Câu 7:

Tìm GTLN, GTNN của hàm số: y = sin2 x + cosx + 2

Xem lời giải »


Câu 8:

Tìm hệ số của số hạng chứa x10 trong khai triển của biểu thức \({\left( {3{x^3} - \frac{2}{{{x^2}}}} \right)^5}\)

Xem lời giải »