Một cửa hàng thời trang có hình thức khuyến mãi sau: giảm giá 10% cho tất cả các mặt
Câu hỏi:
Một cửa hàng thời trang có hình thức khuyến mãi sau: giảm giá 10% cho tất cả các mặt hàng, nếu khách hàng nào mua từ 3 sản phẩm trở lên thì ngoài việc được áp dụng khuyến mãi trên, khách hàng còn được giảm thêm 5% trên tổng giá trị tiền phải trả (đã áp dụng hình thức khuyến mãi lần 1). Anh Bảo đã đến cửa hàng trên mua 2 áo sơ mi với giá niêm yết là 340 000 đồng/1 cái, 2 quần tây với giá niêm yết là 360 000 đồng/1 cái, và một đôi giày giá niêm yết 600 000 đồng/ 1 đôi. Hỏi Anh Bảo đã trả cho cửa hàng bao nhiêu tiền?
Trả lời:
Tổng số tiền anh cần trả nếu không có giảm giá là:
2 . 340 + 2 . 360 + 600 = 2000 (nghìn đồng)
Tổng số tiền anh cần trả nếu chỉ có giảm giá 10% là:
2000 . (100% − 10%) = 1800 (nghìn đồng)
Tổng số tiền anh cần trả nếu có thêm giảm giá 5% là:
1800 . (100% − 5%) = 1710 (nghìn đồng).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).
Xem lời giải »
Câu 2:
Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.
Xem lời giải »
Câu 4:
Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).
Xem lời giải »
Câu 5:
Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên?
Xem lời giải »
Câu 6:
Một hình chữ nhật có diện tích 15m2. Nếu tăng chiều dài lên hai lần, chiều rộng lên ba lần thì diện tích của hình chữ nhật mới là?
Xem lời giải »
Câu 7:
Quãng sông từ bến A đến bến B là 24 km. Một chiếc thuyền xuôi dòng từ A đến B hết 1,5 giờ và ngược dòng từ B đến A hết 2,4 giờ. Hỏi cụm bèo trôi từ bến A đến bến B hết bao nhiêu thời gian?
Xem lời giải »
Câu 8:
Tìm số hạng chứa x3 trong khai triển \({\left( {x - \frac{2}{{{x^2}}}} \right)^n}\) biết n là một số tự nhiên thỏa mãn \(\frac{1}{{A_2^2}} + \frac{1}{{A_2^2}} + ... + \frac{1}{{A_n^2}} = \frac{8}{9}\).
Xem lời giải »