Tìm số hạng chứa x^3 trong khai triển (x - 2/x^2)^n biết n là một số tự nhiên thỏa mãn
Câu hỏi:
Tìm số hạng chứa x3 trong khai triển (x−2x2)n biết n là một số tự nhiên thỏa mãn 1A22+1A22+...+1A2n=89.
Trả lời:
Ta có: 1A2n=1n(n−1)=1n−1n−1
Suy ra: 1A22+1A22+...+1A2n=1−12+12−13+...+1n−1−1n=89
⇒ 1−1n=89
⇒ n = 9.
Lại có: (x−2x2)n=n∑k=0Ckn.xk.(−2x2)n−k=n∑k=0Ckn.x3k−2n.(−2)n−k
Để có số hạng x3 thì 3k – 2n = 3
Suy ra: 3k – 2.9 = 3
Hay k = 7
Vậy số hạng chứa x3 là: C79.(−2)2.x3=144x3.