X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Một hình nón có chiều cao bằng a và thiết diện qua trục là tam giác vuông. a) Tính diện


Câu hỏi:

Một hình nón có chiều cao bằng a và thiết diện qua trục là tam giác vuông.

a) Tính diện tích xung quanh và diện tích toàn phần của hình nón.

b) Tính thể tích của khối nón.

Trả lời:

Một hình nón có chiều cao bằng a và thiết diện qua trục là tam giác vuông. a) Tính diện  (ảnh 1)

Thiết diện qua trục là tam giác vuông SAB có \(\widehat {ASB} = 90^\circ \), mà SA = SB nên suy ra tam giác ASB vuông cân tại S. Suy ra \(\widehat {SBO} = 45^\circ \Rightarrow OB = OS = a\) hay R = a.

Vì tam giác SOB vuông nên độ dài đường sinh là:

\(l = SB = \sqrt {S{O^2} + O{B^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)

Diện tích xung quanh của hình nón là:

\({S_{sq}} = \pi \,.\,a\,.\,a\sqrt 2 = \pi {a^2}\sqrt 2 \) (đvdt)

Diện tích toàn phần của hình nón là:

\({S_{tp}} = {S_{xq}} + {S_{d\'a y}} = \pi \,.\,a\,.\,a\sqrt 2 + \pi \,.\,{a^2} = \left( {\sqrt 2 + 1} \right)\pi {a^2}\) (đvdt)

Thể tích của khối nón là:

\(V = \frac{1}{3}\pi {R^2}\,.\,h = \frac{1}{3}\pi \,.\,{a^2}\,.\,a = \frac{1}{3}\pi {a^3}\) (đvdt)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ  số 2 đứng liền giữa hai chữ số 1 và 3?

Xem lời giải »


Câu 2:

Có bao nhiêu số tự nhiên gồm 7 chữ số thỏa mãn số đó có 3 số chữ chẵn và số đứng sau lớn hơn số đứng trước?

Xem lời giải »


Câu 3:

Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f (x) = −x2 − 4x + 3 trên đoạn [0; 4].

Xem lời giải »


Câu 4:

Tìm giá trị lớn nhất M của hàm số y = x4 − 2x2 + 3 trên đoạn \(\left[ {0;\;\sqrt 3 } \right]\).

Xem lời giải »


Câu 5:

Cho hai tập hợp A = (−∞; m) và B = [3m − 1; 3m + 3]. Tìm tất cả các giá trị thực của tham số m để A Ì CB.

Xem lời giải »


Câu 6:

Cho các tập hợp: A = (−∞; m) và B = [3m − 1; 3m + 3]. Tìm tất cả các giá trị thực của tham số m để CA Ç B ¹ Æ.

Xem lời giải »


Câu 7:

Cho góc \(\widehat {xOy} = 30^\circ \). Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Tính độ dài lớn nhất của đoạn OB.

Xem lời giải »


Câu 8:

Cho góc \(\widehat {xOy} = 30^\circ \). Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 2. Tính độ dài lớn nhất của đoạn OB.

Xem lời giải »